
1. Introduction

In the last few decades, technologies for the planning, 
development and operation of communication networks 
have largely remained unchanged. With the exponential 
growth of the modern Internet, network specifications 
and network traffic have changed significantly, as 
rigorous technologies are continually evolving for cloud 
services, IoT (Internet  of Things) technologies and the  
new generation of mobile communication system of 5G, 
server virtualization and big data (Hakiri et al., 2014; Li 
et al., 2020; Singh & Jha, 2017). The growing complexity 

of traditional networking architectures does not cater for 
the exponential increase of data traffic (Rehman et al., 
2019). In addition, technology progresses, connectivity 
needs and the rise of numerous resources, such as 
VOIP or streaming video in High Definition where 
unimaginable when conventional network architecture 
was planned. These contributed to the issue of improving 
the network infrastructure control and adapting it to 
the recurring resource needs of modern applications. 
Cognitive networks  and software defined networks 
are evolving quickly to satisfy the current networking 
demands of isolation, virtualization, traffic engineering, 
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access control and above all programming (Martinello 
et al., 2014). These types of networks are required 
since existing networks are outdated due to new and 
innovative technologies and the limit to network growth 
is being made available (Malik & Fréin, 2020). 

Figure 1: Traditional network layer versus SDN 

The data plane and control plane are merged in 
traditional network architectures, as shown in figure 
1, the interconnection of the Traditional layer makes it 
closed as it layer depends on each other. Additionally, the 
control plane does not hold any abstraction levels unlike 
the data plane. (Kreutz et al., 2015). As seen in figure 1, 
the SDN network layer work independent of each other. 
The Control Plane consists of configuration protocols 
such as Multi-Protocol Label Switching (MPLS) and a 
variety of routing protocols. In Traditional Networks, 
example of protocols include, Routing Information 
Protocol (RIP), Enhanced Interior Gateway Routing 
Protocol (EIGRP), Shortest Path Bridging (SPB) etc. 
However, this protocol addresses particular problems 
without basic abstraction. This causes network difficulty 
in connecting a computer. In addition due to packet 
flooding, increased time to track errors, estimating 
alternative paths and upgrading the router table, there 
is a significant recovery delay in conventional IP 
networks (Alzahrani & Fotiou, 2020). This makes 
existing networks very stagnant and cannot be regulated 
dynamically. 

The next generation infrastructure for the internet 
has implemented the SDN concept to tackle traditional 
network architecture issues in order to create an optimal 
architecture that can be managed effectively, adaptably 
and at low costs (Braun & Menth, 2014; Hakiri et al., 
2014; Zhao et al., 2019).  The SDN architecture has 
established a network abstraction layer. As shown in 
figure 2, the data and control planes are characterized 
by network services abstraction (Saraswat et al., 2019). 
A centralized authorization known as the controller in 
figure 2, provides the communication to instruct network 
switches to route and monitor the traffic through the 

network (Braun & Menth, 2014). As the Controller 
has a global networking view, it would provide ideal 
network routes either before or on request. (Alzahrani & 
Fotiou, 2020). With the global view, it thus determines 
optimally for the disrupted flows when looking for an 
effective alternative route. Additionally, a well-defined 
programming interface between the switches and the 
SDN controller facilitates the distinction between 
control and data plane as depicted in figure 2. (Braun & 
Menth, 2014; Kreutz et al., 2015). 

Figure 2: SDN architecture

SDN Controller configures transition flows and 
tracks how nodes are communicated by the switch 
(Braun & Menth, 2014). Therefore, it is possible to 
detach network devices on the switch and control traffic 
on the OSI layer. This is simpler than the traditional 
network separation. 

OpenFlow is the most common and open standard 
communication protocol between the SDN controller and 
OpenFlow switches. OpenFlow was designed in 2008 
and currently managed by Open Network Foundation at 
Stanford University (ONF). The fundamental principle 
of OpenFlow is that there are forwarding tables and 
an open API that the OpenFlow controller uses. The 
transmitting rules to the switch are being used as the 
controller knows the Network Vision. The opened 
specification requires separate devices from multiple 
vendors to be connected to one OpenFlow controller. 
(Braun & Menth, 2014).
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While OpenFlow is a significant step towards 
opening the control plane, it does not simplify hardware 
entirely or allow flow state changes. (Martinello et al., 
2014). OpenFlow architectures often have scalability 
problems in core networks in particular since they 
involve a broad number of active flow-related states 
(Braun & Menth, 2014).  

OpenFlow’s limitations led researchers to construct 
smoother core network components for packet forwarding 
using the Residue Number Method. (Liberato et al., 
2018; Martinello et al., 2014, 2017; Spalla et al., 2015). 
By means of a combination of small numbers produced 
by the remaining part of a large number, RNS makes it 
possible to represent a large number entirely. The large 
number is a route ID, the small numbers are the output 
ports of the core switches used for the specific path and 
the related co-primes are the core network interfaces. 
Current networks are very dynamic, and therefore, the 
configuration changes and link failures in a single time 
are very high (Rehman et al., 2019; Yu et al., 2019). 
Consequently, many resilient routing approaches in 
SDN networks based on RNS routing were proposed in 
this regard. (Gomes et al., 2016; Liberato et al., 2018; 
Spalla et al., 2015), however, the configuration of 
backup paths to achieve high network throughput and 
latency in failure recovery still remains a challenge. 

With substitution of table lookups by modulo 
operations, RNS based SDN schemes were able to 
mitigate latency problems occurring in OpenFlow 
Lookup table in SDN (Cercós et al., 2014; Martinello 
et al., 2014), however, the challenges of fast failure 
recovery still exists (Muthumanikandan, 2017). 
Additionally, the Residue Arithmetic based schemes 
where fault detection mechanism were included are 
all proactive based approaches (Liberato et al., 2018; 
Valentim et al., 2019). Here, the use of larger data path 
labels for both primary and emergency routes and  the 
problem of early backup path failure before the primary 
path are challenges (Valentim et al., 2019). 

Network elements, including forwarding devices 
and connections, are likely to fail (Malik & Fréin, 2020; 
Rehman et al., 2019). As a result, network facilities such 
as routing are damaged. Recovery from failure can be 
done either proactively, or reactively also referred to as 
recovery. The alternate path is prepared and reserved 
for security before failure happens. However, the 
solution is not pre-planned during restoration and can be 
automatically determined (on request) if a malfunction 
happens. Link failure in software defined networks are a 
continuing source of service interruption. Consequently, 
many re-routing methods have been suggested after 
a connection breakdown. This study focuses on the 

problem of multiple contingency paths for the treatment 
of single and dual link failure. In the current study, we 
focus on a reactive approach for fast failure recovery 
in other to reduce the large data labels and also build 
multiple alternate emergency path in case of multiple 
link failures for a RNS based SDN. The shortest path 
fast re-routing technique is employed in this scheme 
in order to reduce the loss of data and minimize the 
recovery time.

The next section of the paper provides an overview 
of RNS together with the common representations and 
definitions. Various related work on RNS based Software 
Defined Network are illustrated in Section III. Section 
IV discusses resilient routing in Software defined 
networks with the proposed scheme and implementation 
in section V and VI. Finally, the paper is concluded in 
Section VII with a discussion on anticipated results and 
the direction for further research. 

2. Overview of residue number system

2.1. Overview of Residue Number System (RNS)

The RNS is a system of unusual numbers identified 
with the relatively prime moduli set { , , ...,

} which is gcd( ) = 1 where  (Navi et al., 
2011). Considering a number X with a modulo m, then 
X could be expressed by its residue r as (1).
r = |X|m   (1)

Equation (1) can be represented by X ≡ r (mod m).

For instance, the number X=64 with modulo m = 

13 can be shown as . Similarly, the 
number Z=51 with the same modulo could be represented 

as  = = 12. The modulus 13 shows both X and 
Z as 12. In this case, X and Z are congruent modulo m. 
Instead of utilizing a single modulus, a set of multiple 
moduli, { , , ..., }, is proposed to represent a 
number. A number can then be represented as one set 

of residues,  accordingly. 
For example, assuming there is one set of moduli {13, 
16, 19}, number X and Z would be represented in 

RNS as  and   
respectively.

The general RNS calculation model as shown in 
Figure 3 below includes the conversion steps to the RNS 
and the positional notation from the RNS is depicted.
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Additionally, a separate computational structure 
is used to represent different kinds of non-modular 
operations (Deryabin et al.,  2018). RNS data transfer 
requires that the Chinese Remaining Theorem (CRT)  
be used by a forward or opposite converter to transform 
weighted operands to residual representations (Navi 
et al., 2011) or the Mixed Radix Conversion (MRC) 
(Gbolagade & Voicu, 2011; Navi et al., 2011). The forward 
conversion includes the transition to RNS equivalent of 
binary or decimal numbers, while the reverse conversion 
transforms RNS numbers to binary or decimal numbers, 
and arithmetical operations like addition, subtracting and 
multiplying can be carried out in parallel by using RNS 
without carries between residue numbers.                                                                               

Chinese Remainder Theorem (CRT)

Let the residue representation of x for moduli 

 be given as . The 
Chinese Remainder Theorem makes it possible to 
determine |x|M  , provided the greatest common divisor 
of any pair of moduli is 1. Using the equation:

   (2)

Where
  
and is the multiplicative inverse 

of with respect to  such that .

Such that 

1 2 3

1 1 1
1 1 1 2 2 2 3 3 3| | | | | | |m m mX m M x m M x m M x− − −= + +  

      (3)

RNS for routing in Software Defined Networks

Let Network domain represent a set of n Switches in 
a desired path so that  where 

need to be pairwise relatively primes. 
That is the switches represent the moduli set.
Let P be a set of outgoing ports   
which is considered as a residue.

Thus, in order to establish communication between 
two pair of hosts, the RNS based Controller needs to 
calculate what is the number (route- ID) for which the 
modulo operations results will lead the packets to their 
destination.
Then, there exists a unique integer X such that 0 ≤ X <  

 that solves the congruence.

   .

Let 

Using CRT it is possible to calculate X through its 
residues:

Figure 3: Model of computation in RNS
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    (4)

Where and is the multiplicative inverse 
of with respect to 

   
 
      (5)

For example, from the diagram in Figure 4, core 
switches are assigned to co-prime numbers to establish 
the communication between the pair of hosts, in this 
example {5, 7, 11, 13}. For instance, it chooses the route 
to be set through the switches S = { , , } = {13, 
5, 7} and switches’ output ports are P = { , , } = 
{2, 0, 0}. A label (route id) is computed using CRT, for 
example 210 in the example diagram M =13 · 5 · 7 = 
455 and  =35,  =91,  =65. 

 =    =   = 3
=   = 1
=   = 4

Using CRT,  R = <  ·  ·  +  ·  ·  +  · 
 ·  > mod M

R = < 210 +0+0 >mod 455 = 210.

On computing the route-ID, the controller sends the 
route-ID to the edge switches in example above 210 which 
then install the respective flow-table rule. Additionally, 
the ingress edge switch is responsible for embedding 
route-ID into each packet coming from src host to dst 
host. Thus, as shown in the Figure above, when a packet 
enters a core, the modulo of the route ID and the switch is 
used to determine the output port to forward the packet to. 
For example when S13 receives a packet with route-ID 
(R = 210), it forwards the packet to port  
; then, S5 forwards it to port ; after, S7 
forwards it to port , reaching the egress 
edge switch that removes the route-ID from the packet 
and delivers it to dst host. 

3. Related works

3.1. Residue number system based software defined 
networks

RNS was used by Wessing et al., (2002) for packet 
forwarding and to avoid both optical header rewriting 
of photonic packet switching networks and the need 
for label distribution protocols. In packet forwarding in 

Figure 4: Sample Packet forwarding using Residue Number system based SDN’s.
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software-defined networks, RNS is often used to replace 
the OpenFlow table lookup with modulus of the RNS 
operations that allow explicit recognition route coding 
at the edges and stateless forwarding techniques in the 
center of the network (Liberato et al., 2018; Martinello 
et al., 2014). The use of RNS for packet forwarding has 
the potential to unravel the efficiency of SDN usage in 
core networks. The section reviews literatures that have 
addressed or use RNS to improve SDN’s.

Wessing, et al. (2002) applied RNS to avoid both 
optical header rewriting of photonic packet switching 
networks and the need for label distribution protocols. 
The authors implemented a packet transmission using 
the Chinese Remainder Theorem (CRT) by creating a 
label based on two arrays. Both of these arrays have all 
the node-specific keys and all the output information 
needed for a particular path through the core network. 
Where the network path is wanted, an array consists 
of all node-specific keys and the other array consists 
of the output ports for the specified path. The authors 
configured the network with each core node and 
assigned a key, however, the information of the topology 
of the network and the assigned keys are provided to 
the edge nodes. The authors computed the label using 
CRT when the packet enters the network and finally 
the label is added to the packet that is transmitted to 
the core network. Their system is able to calculate the 
output information within each of the core nodes using 
the modulo operation of RNS. The authors assessed 
the system’s scalability, allowing the software to scale 
up to 50 core nodes for multi-protocol label switching 
(MPLS) networks, since only 7 bytes are needed for the 
label in the header. However, the minor restriction in 
route length and the requirement for larger number of 
nodes in core networks still remains a challenge.

Martinello et al. (2014) proposed a scheme to 
further decouple the control and data planes in the 
design of SDN. Their approach totally eliminated the 
use of lookup tables in the forwarding engine using 
the operations of RNS. The route path ID is computed 
based on RNS without further interaction with the 
nodes. Experimental analysis was performed using 
Mininet emulation environment and OpenFlow 1.0 
with a Round Trip Time (RTT) above 50 percent and 
30 percent reduction in keeping active flow state in the 
network. However, the scheme is not fault tolerant as 
there are no protection paths that can be pre-computed 
at the controller. 

Cercós et al. (2014) performed a detailed and 
comprehensive data plane power consumption analysis 
of the OpenFlow switch by breaking it down its design 
modules The KeyFlow was proposed as an alternative 

since it eliminates a flow table lookup. Experimental 
analysis reveals that the overall power consumption is 
reduced by 53.7%.  

Cercos et al. (2015) proposed a new south-
bound protocols within SDN with the use of Residue 
Number System which the SDN architecture in terms 
of cost and energy efficient forwarding engine. This 
authors used the Keyflow in (Martinello et al., 2014) 
approach to simultaneously reduce latency, jitter, and 
power consumption in core network nodes of SDN. 
Experimental result reveals that the round-trip time 
(RTT) can be reduced above 50% compared to the 
OpenFlow protocol, especially for densely populated 
flow tables. The author’s demonstrated the reduction 
of jitter by implementing the prototype on a NetFPGA 
based platform, which reveals that there is a 57.3% 
reduction in power consumption. 

Spalla et al. (2015) proposed a scheme to explore 
the OpenFlow roles for the design of resilient SDN 
architectures relying on multiple controllers. The authors 
implemented their scheme using the Ryu controller 
exploring the OpenReplica service to ensure consistent 
state among the distributed controllers and a prototype 
was tested with the RouterBoards/MikroTik switches 
and evaluated for latency in failure recovery and switch 
migration for different workloads.  

Gomes et al. (2016) proposed a scheme incorporating 
deflection guiding mechanism and RNS in intra-domain 
resilient routing system in which edge-nodes set a 
route ID to select any existing route as an alternative to 
safely forward packets to their destination. The authors 
used the RNS approach in (Martinello et al., 2014) but 
improved the Network by dealing with failed links 
based on driven routing deflections that enables to keep 
the communication alive even without the controller 
reaction to a failure. Experimental analysis using Mininet 
network emulation environment shows that the scheme 
was able to avoid packet loss, and using the deflection 
controls the enabled the packet disordering on TCP 
throughput to about 25%. However, source routing from 
the controller takes long time to recover from failures. 

Liberato et al. (2018) proposed a new concept of 
programmable Residues Defined Networks (RDN) based 
on SDN concept. The authors used a protection mechanism 
which permits tableless switches in a faster alternative to 
controller-based restoration of the route to re-route packs 
directly onto the data plane. For the sake of fault tolerance, 
an alternate path is pre-computed into the packets that lead 
the packets to their destination if a key switch detects a 
fault in their networks. The authors implemented the RDN 
prototype in Mininet emulated environment while the 
core switches were implemented in NetFPGA devices to 
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increase the accuracy on latency measures. Experimental 
result shows the scheme offers an ultra-fast failure recovery, 
and no jitter within the RDN core while also achieving low 
latency in around 2.33μs for 3 hops and 2.93μs for 4 hops 
with RDN switching time per hop (≈ 0.6μs). However, 
there is overhead due to the insertion of both primary and 
emergency route in the packet header, the use of emergency 
route can be optimized for multiple link failures.

Valentim et al., (2019) proposed a Residue Defined 
Network Architecture for load balancing by exploiting 
the elephant flow isolation and strict source routing in 
core nodes. The authors used the flow classification 
operations performed on the edge using features of the 
OpenFlow protocol. The scheme used core switches 
that forward packets based on the remainder of division 
between the route identifier and the switch identifier. 
A prototype was implemented using OpenStack as the 
cloud manager framework. Edge and core switches were 
virtualized using a customized version of OpenvSwitch 
(OvS). Experimental result show that the scheme is 
able to migrate routes with low data loss rate, without 
compromising the communication between servers. 
However, the scheme is not able to detect congestion 
detection and queue overflow detection.

Lacan & Lochin, (2020) introduced a XOR-based 
source routing enable fast forwarding and low- latency 
communications. The scheme utilizes linear encoding to 
construct the route labels of unicast data and multicast 
data transfers. In contrast to standard table lookup, they 
allow quick, computationally efficient routing decisions 
without any packet alteration along the path. The authors 
compared their scheme with the scheme proposed by 
(Liberato, et al., 2018) that uses RNS modular property 
to compute a label-ID number to identify (following a 
reverse operation) the output switch port considering a 
unique router ID. The comparative analysis indicates 
that the scheme computes the smallest label possible 
and presents strong scalable properties compared to 
approaches based on modular arithmetic. However, 
their scheme does not possess a fault tolerant capability 
and it involves a lot of complexities.

3.2. Resilient routing in software defined networks

Resilient routing and link failure recovery in software 
defined networks is becoming more important nowadays 
because of increasing development of new internet 
and devices, there has been an extraordinary change 
in network requirements coupled with an increase 
in network traffic due to the constant development of 
rigorous applications and increasing number of users. 
Hence, there is need for efficient and fast failure 

recovering during packet routing (Muthumanikandan, 
2017; Petale, et al., 2020; Rehman et al., 2019; Yu et al., 
2019). Link failure recovery techniques take advantage 
of central control SDN unique features and flexibility 
of programmable data planes for real-time applications 
like video conferencing and voice over IP (VOIP), 
which can tolerate a delay of 50 ms in case of recovery. 
The different methods of link failures recovery in SDN 
can be divided widely into two categories: proactive and 
reactive (Petale et al., 2020).

3.2.1. Proactive approaches for link recovery

In proactive recovery, alternate backup routes have been 
preconfigured. The identification of failure is local and 
the flows from the failed link are passed automatically 
without contact with the control unit to the alternate 
direction. If a fails, the flow rules for the backup path 
are set on the switch already. Therefore the packets from 
the failed connection are diverted to the alternate route 
identified by the switch. Proactive Recovery proponents 
contend that proactive recovery is time efficient, because 
paths are preset and no alternate paths must be tested by 
the controller. Therefore, it is held to a minimum every 
time you consult the controller and select an alternate 
course. An alternate path, however, must be built 
for each flow of the failed link, which is impractical, 
violating the limitations placed on the flow table input 
by the data plane switches.

3.2.2. Reactive Approaches for Link Failure Recovery 
in SDN

Reactive failure recovery is primarily reliant on the 
SDN controller  (Lin, et al., 2016; Petale et al., 2020). 
If the controller senses faults, then by sending regular 
heartbeat messages the controller searches for a possible 
route for the failing link. The controller eliminates the 
old flow inputs and attaches new flow inputs to the SDN 
switches for the revised route.

While the reactive methods the alternate path can 
be sought dynamically, control intervention causes 
a considerable duration of recovery. Because of the 
overall synchronization between the switches and the 
control, there is additional time to locate the alternate 
path and to initiate new flow entries. 

4. The proposed scheme and implementation

The proposed system uses a reactive mechanism to 
respond to link failure. The Controller uses RNS 
arithmetic for routing instead of the OpenFlow table 
routing, when a link failure occurs, the switch nearest 
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Figure 5: Proposed qrchitecture of RNS based SDN with shortest path fast rerouting 

Proposed Resilient re-routing procedure

Start:
For communication between source host to destination host 
Step 1: Start
Step 2: Extract Ethernet header
Step 3: if (Ethernet == type of Source Routing)
 Extract SR header & get Port
 Compute route id using CRT
 Set Output Port and emit packet
 If (Output is not available)
                  Calculate Alternate Path using Shortest re-route
    Repeat Step 3
 Endif
End if
Step 4: Deliver to Output port
Step 5: Stop
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to the failure sends a signal to the Controller which then 
computes the shortest path from the switch to the required 
destination. The architecture of the proposed scheme, 
showing the details of the RNS path computations and 
the shortest path fast re-route is shown in figure 5.

Shortest path fast rerouting

The set of shortest paths as shown in figure 6, are computed 
reactively on demand thereby memory overhead can be 
reduced. Multiple backup shortest paths are computed to 
help in handling single and dual link failures.

Figure 6: The shortest path algorithm

The embedding of resilient and fast link failure 
recovery modules in SDN is of crucial importance. Most 
proposals for resiliency and fault tolerance in RNS based 
SDNs are mostly proactive with large overheads for 
emergency route embedding in packet header (Liberato 
et al., 2018; Martinello et al., 2017). Others have used 
route deflection which is probabilistic and has transient 
loops (Gomes et al., 2016). 
The step taken for reactive response to link failure 
using shortest path re-route is explained below:

 - The controller calculates the backup path 
reactively upon notification of a link failure and 
installs it in the switch.

 - The switch generates renewal packets to keep 
the existing backup paths alive irrespective of 
the idle time of flow entries 

 - The new route-ID generated is used to perform 
modulo operations on the switches to determine 
the next switch and the destination

 - Once the failed link is up, switch notifies the 
controller to recalculate the best path by sending 
recovery packets.

5. Results and discussion 

In cases of link failure, most approaches have used 
route restoration which tries to notify the controller 
to recalculate the route by excluding the faulty links 
from the available path. Other approaches include route 
deflection (Gomes et al., 2016) which is probabilistic 
and has transient loop and the selection of an 
Emergency route Id (ERI) (Liberato et al., 2018). Our 
approach uses a reactive approach to link failure. For 
the implementation of RNS based routing algorithm and 
shortest path fast re-route, the RNS tables routing was 
improved on by introducing the shortest path fast re-
route during link failure. When a packet arrives at the 
ingress edge switch, the packet is sent to the Controller 
which selects the main routes among all pre-calculated 
paths between the source and destination. Additionally, 
the Controller installs OpenFlow rules at the ingress and 
egress switches, when a link failure occurs, the nearest 
switch to the failure point communicates to the controller 
which then reactively compute the set of alternate routes 
using the shortest path fast re-route algorithm.

When link failure occurs, a message is sent to 
the controller which chooses from the shortest path 
computed for re-routing. The controller computes the 
protection path based on the model shown in figure 5, 
ensuring there are no emergency route necessary thereby 
reducing packet header information and increasing 
routing resilience especially for multiple link failures. 
In situations where there are no link failures, there is no 
overhead in computing the alternate path in the packet 
header. The controller only responds when there is a link 
failure. When the switch receives a packet, it checks if the 
port is available, then primary route ID is used. However, 
if the switch port is not available, the controller selects 
a new primary route ID using the shortest path fast re-
route algorithm, henceforth, the new route-ID is used to 
bypass the failed link. For the subsequent switches along 
the route, they just keep doing the modulo operation until 
the packets reach the edge. 

6. Conclusion and further work

This research develops a proposal for RNS based SDN 
with the shortest path re-route for resilient routing. 
The algorithm would be introduced to SDN with the 
possibility of reducing the early backup path failure 
and the overhead caused by larger data path for both 



78        Technoscience Journal for Community Development in Africa, Vol 2, No 1, 2021

primary and emergency route in Residue arithmetic 
based SDN. The next intent is to create a prototype 
of this methodology, test and evaluate with the RNS 
based proactive approach to resilient routing in SDN. 
The expectation here is that the proposed approach 
will successfully and efficiently create a fast reaction 
to failure, reducing the large data path for the primary 
and emergency route as well as the early failure of 
emergency route in the proactive approach.
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