
1. Introduction

The Internet of Things (IoT) is a connection 
of internet-connected objects (nodes) that can send 
and receive or transfer data over a wireless network 
without human intervention. The nodes in IoT network 
can be medical sensors, fitness trackers, smart car, 
smart watches, etc (Ahmad et al., 2022). The IoT has 
an extensive applicability in several areas, including 
healthcare. Internet of medical things (IoMT) is a subset 
of IoT that amalgamate medical devices and applications 
that can connect to health care information technology 
systems using networking technologies (Hameed et al., 
2021). Wireless Body Area Networks (WBAN) that 
contains of wearable and implanted medical devices 
connecting to and monitoring various parts of the body 

are a major component of Internet of Medical Things. 
As an alternative to keeping patients in hospitals these 
devices are able to monitor the patient’s health constantly 
in real-time, and giving them superior physical flexibility 
and mobility. In another development, medical robots 
are also capable of accurately executing minor surgeries. 
Also, they are capable of performing some medical tasks 
like Cardio-Pulmonary Resuscitation (CPR) (Yaacoub 
et al., 2020). 

IoMT is a domain of connected sensors, wearable 
tools, medical devices, and clinical frameworks. It 
allows several applications of human services to reduce 
costs of social insurance, give proper clinical responses, 
and target medical treatment. Due to advancements in 
remote communication, sensor systems, mobile phones, 
big data analysis, and distributed computing, IoMT is 
changing the human services industry by providing 
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customized medical treatment and standardizing the 
communication of clinical information (Rasool et 
al., 2022). IoMT has great impact with the advent of 
Industry 4.0, such as the integration of the automobile 
industry with IoMT. The digital pillars of Industry 4.0 
augmented reality, virtual reality, artificial intelligence, 
machine learning, and sensors are shaping the future 
of the medical world. The embedded sensors in the 
IoMT paradigm enable the continuous monitoring of 
critical parameters such as ECG, heart rate, blood sugar 
level, temperature, and respiration. The integration of 
medical embedded devices, equipment, and the internet 
allows for the implementation of smart intensive care 
units (ICUs), smart thermal scanners, medical asset 
administration, and smart pill dispensers (Yaacoub et 
al., 2020). 

Despite all the benefits and projected evolution in 
the IoMT, severe security concerns patients’ confidential 
information stealing, Distributed Denial of Service 
(DDoS) need attention to protect networks and devices 
from vulnerabilities and various known and unknown 
cyber-attacks. Networks and IoMT devices are vulnerable 
to various security threats. Without a comprehensive 
solution to protect against known and zero-day attacks, 
critical issues such as data breaches, false diagnostics, 
fatal accidents due to equipment failure, and Distributed 
Denial of Service (DDoS) attacks can happen. The 
most dangerous in IoMT is DDoS, which shut down the 
critical services or make them unresponsive which can 
cause great harm to the patients (Ahmad et al., 2022).

Unlike traditional networks, IoMT network nodes 
have limited resources and low capacity and sometime 
have control manually. Thus, these ubiquitous devices 
usually become vulnerable to the attackers. Since many 
unique and variants of cyber-attacks being generated 
daily, there is a growing concern for the security of 
these devices (Shareena et al., 2021). For years several 
security solutions are developed of which some of them 
have shown promising result to prevent certain types of 
attacks. Likewise, quick and effective attack detection 
are needed as the IoMT devices generates huge amount 
of data. The common occurring attacks in IoT networks 
are botnets, DoS, man-in-the-middle, infiltration, 
identity and data theft, ransom ware, etc. Among them, 
botnet attacks are very common and preventing them 
entirely would not be possible as their behavior changes 
over the period (Nguyen et al., 2022). 

Although IoMT is involved in large-scale service 
supply in the medical paradigm, their resource constrained 
nature exposes them to significant security and privacy 
challenges. These flaws are not only devastating for 
IoMT, but also imperil the entire healthcare ecosystem, 

putting human lives in jeopardy. Due to their varied 
character, substantial normal behavior, and the increase 
in vulnerabilities owing to the exponential proliferation 
of IoT devices, traditional intrusion detection systems 
(IDS) are inadequate in the IoMT context (Ahmad & 
Alsmadi, 2021). Several researchers (Allouzi & Khan, 
2021; Dina & Manivannan, 2021; Xin et al., 2018; 
Zhang et al., 2008) have contributed significantly to the 
development of intrusion detection systems in IoMTs. 
Deep learning algorithms have recently shown positive 
performance in safeguarding IoMT networks and 
devices. Hence, deep learning models require a lot of 
computational power, which may be too much for the 
low-capacity nodes in IoMT networks (Rahman et al., 
2020). In-order to detect the botnet activity on IoMT 
devices, this study proposed a Deep Learning (DL) 
strategy for detecting intrusion attacks in IoMT devices. 
Deep learning, a subset of Machine Learning (ML) (Ge 
et al., 2019), is well-known for its superior problem-
solving capabilities and efficiency when dealing with 
large amounts of data. According to the literature, DL 
can be employed effectively in a wide range of cyber 
security applications (Jagannath et al., 2019). To detect 
botnet activity on IoMT devices, we propose a deep 
neural network (DL) model and compressed it using 
neural network weight pruning technique (Zhu & Gupta, 
2017). The DL algorithms are effective when there is a 
vast amount of data or a pattern to be recognized (Taye, 
2023).

2. Related Works

Several researchers have proposed different machine 
learning approaches to monitor and detect attacks on 
IoT networks. McDermott et al. (2018) proposed a 
deep learning strategy that combines a Bidirectional 
Long Short-Term Memory Recurrent Neural Network 
(BLSTM-RNN) with word embedding to transform 
string data extracted from captured packets into a 
representation suitable for BLSTM-RNN-based botnet 
identification. The data for training and evaluation 
was obtained from GitHub. The model reached 99% 
accuracy, although LSTM adds overhead and increases 
processing time. As a result, the model is incompatible 
with low-resource IoT devices. 

To detect an intruder attempting to inject extraneous 
data In an IoT network, Jan et al. (2019) proposed a 
lightweight intrusion detection model based on a support 
vector machine (SVM). The authors reduced system 
processing time by relying on a single feature packet 
arrival rate rather than multiple network attributes. The 
SVM-based classifier was then used to determine if the 
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input sample was normal or intruded. The model was 
tested using the CICIDS2017 dataset, and it achieved 
98.03% accuracy. In order to identify infiltration in IoT 
devices, a single feature attribute is insufficient. 

To distinguish network traffic as benign or malicious, 
Ge et al. (2019) proposed a binary classification model 
based on a feed-forward neural network. The model 
was evaluated using the Bot-IoT dataset. Although 
their model attained a high accuracy of 92% for binary 
classification, it suffers from a poor accuracy of 82% 
for multiclass classification because their model is 
confused by subcategories of assaults within the same 
category. Almogren (2020) also proposed an edge-based 
intrusion detection strategy using a deep belief network. 
The system includes three components: data gathering, 
feature extraction, and detection. The UNSW-NB15 
dataset was used in the evaluation. The model’s accuracy 
is 85%, making it ineffective for intrusion detection. As 
a result, accuracy should be enhanced. 

Li et al. (2020) proposed a multi–convolutional 
neural network (multi-CNN) fusion approach for 
intrusion detection. The one-dimensional feature data is 
transformed into a grayscale graph before being input 
into the CNN for classification. The NSL-KDD dataset 
was utilized to train and validate the CNN model, yielding 
accuracy of 86.95% for binary classification and 76.67% 
for multiclass classification on the KDDTest and KDD 
Test2, respectively. As a result, their approach needs 
future improvement.  Rahman et al. (2020) proposed 
two parallel techniques in which parallel models were 
developed to correspond to partitioned attack datasets, 
thereby distributing the computational workload. The 
parallel models are used initially for side-by-side feature 
selections, followed by a single multi-layer perceptron 
classification operating on the fog side. In the distributed 
case, the parallel models conduct both feature selection 
and multi-layer perceptron classification independently, 
after which the outputs are integrated by a coordinating 
edge or fog to make the final judgment. With 97.80% 
accuracy, the Aegean Wi-Fi Intrusion Dataset (AWID) 
was used for evaluation. The dataset utilized is out of 
date and does not relate to IoT. 

In the fog node, a network intrusion detection system 
based on the Exact Greedy Boosting ensemble approach 
was proposed by Reddy et al. (2021). The algorithm 
analyzes nodes and networks to detect intrusions and 
alerts users when threats are identified. The accuracy for 
binary, multiclass, and subcategory was 99.6%, 96.7%, 
and 84%, respectively. The system was evaluated 
using the IoTID20 simulated environment dataset. 
Because their work focused on data from the simulated 

environment, it might lead to a variety of challenges 
based on real-time data. 

Nimbalkar and Kshirsagar (2021) proposed a 
feature selection approach for intrusion detection 
in IoT that utilizes Information Gain (IG) and Gain 
Ratio (GR), selecting the top 50% of features for 
DDoS attack detection. The system generates 
feature subsets by performing insertion and union 
operations on subsets generated by ranking 50% 
IG and GR features. The approach was examined 
and validated using a JRipclassifier with 99.99% 
accuracy and 16.5s detection time on the IoT-BoT 
and KDD Cup 1999 datasets, respectively. As a 
result, the model has a high time complexity for 
detecting attack in IoMT. To identify intrusion in 
the fog layer of an IoT network, Kan et al. (2021) 
developed a technique combining adaptive particle 
swarm optimization (APSO) with a convolutional 
neural network (CNN). The APSO adaptively 
optimizes the structure parameters of a one-
dimensional CNN as well as the loss function 
value of training the CNN as the PSO fitness value. 
During evaluation, 96% accuracy was reached. 
Despite the fact that an optimization approach 
was applied at the data level, the model has a high 
time complexity. As a result, optimization at the 
algorithm level is required.    

Shareenaet al.  (2021) presented a complex deep 
neural network to predict whether network traffic 
is malicious. The Bot-IoT dataset was used for 
training and evaluation, achieving 94% accuracy. 
However, there is no evidence that their model is 
lightweight, making it unsuitable for low-resource 
devices. Rambabu and Venkatram (2021) proposed 
a technique to reduce the computation time of an 
intrusion detection system by employing K-nearest 
Neighbor (KNN) for dimensionality reduction and 
ensemble classification using traffic flow metrics 
(ECTFM). The NLS-KDD dataset was used for 
training, achieving 96% accuracy. Nonetheless, 
data-level optimization is not practical for IoT 
device intrusion detection.

Su, He, and Wu (2022) trained decision trees, 
random forests, and gradient-boosting machines 
(GBM) for IoT threat detection and compared 
their performance using the IoT 2020 dataset. 
The decision tree has a higher accuracy of 98%, 
however the random forest has a higher AUC of 
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99%. Because a minor change in the data might 
create a huge change in the structure of the decision 
tree, generating instability, the decision tree model 
is not a better solution for intrusion detection. 
Hameed et al. (2021) presented a hybrid lightweight 
intrusion detection system for IoMT fog attack 
detection. The system employs six incremental 
classifiers: Weighted Hoeffding Tree Ensemble, 
K-Nearest Neighbors, Naive Bayes, Hoeffding 
Tree Majority Class, Hoeffding Tree Naive Bayes, 
and Hoeffding Tree Naive Bayes Adaptive. They 
gathered and retrieved data from seven disparate 
sensors, including an IoT-fridge, a garage door, a 
GPS tracker, Modbus, a sensor light, a thermostat, 
and a weather sensor. By using a sliding window to 
configure the ML classifiers. They report accuracy 
of 92.9%, a model space complexity of 6 MiB, 
and an execution time of 21 seconds. Because the 
system employs incremental learning, increasing 
the number of instances results in an increase in 
execution time. Performance varied across sample 
frequencies, indicating that their methodologies 
were not robust and were influenced by concept 
drift in the data.  

Most closely related to our work is Chaganti 
et al. (2022), who proposed using Particle Swarm 
Optimization (PSO) for feature extraction and a 
deep neural network (DNN) for detecting attacks 
in IoMT networks. They trained and evaluated 
their model with imbalanced IoMT network traffic 
and patient biometric datasets. They thoroughly 
analyzed different machine learning and deep 
learning algorithm including Logistic Regression 
(LR), K-Nearest Neighbor (KNN), Decision Tree, 
AdaBoost, Random Forest (RF), Support Vector 
Machine (SVM), Deep Neural Networks (DNN), 
Convolutional Neural Network (CNN), Long 
Short-Term Memory (LSTM), They reported 
that DNN perform better and achieved accuracy 
of 96%, precision of 95% and recall of 95%. 
Although, the model achieved high accuracy but 
lack generalization and the performance can still be 
enhanced. Medical devices have limited processing 
power and storage capacity, which can make it 
difficult to run resource-intensive DNNs. 

To build upon the work of Chaganti et al. 
(2022), we propose using Principal Component 
Analysis (PCA) as a dimensionality reduction 

technique to decrease the complexity of the data. 
By applying PCA, we aimed to capture the most 
important features of the dataset while reducing its 
dimensionality. To address the issue of imbalanced 
data, we employed the Synthetic Minority Over-
sampling Technique (SMOTE). Considering the 
resource constraints of Internet of Medical Things 
(IoMT) devices, we proposed a compression 
technique that involved pruning the less significant 
weights of the model. By eliminating the less 
significant weights, we aimed to reduce the model’s 
size and computational requirements, making it more 
suitable for deployment on resource-constrained 
IoMT devices.   To ensure that the compressed 
model maintained its accuracy, we performed fine-
tuning. This process involved retraining the model 
using the pruned weights as a starting point and 
further optimizing it to achieve a balance between 
model size and performance.

3. Materials and methods

This section presented the methodology used in the 
research. The overall framework and steps employed in 
the research are depicted in Figure 3.1. The framework 
served as a guide for the execution of the research, 
while the steps outlined the systematic approach that 
was followed throughout the study. By adhering to 
this methodology, the research aimed to ensure rigor, 
reliability, and validity in the investigation process.

3.1.	 Research framework

Figure 1: Proposed approach
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3.2.	 Dataset used

Hady et al. (2020) used a real-time health monitoring 
testbed to create the dataset. The testbed consists of 
sensor devices attached to the patient’s body, a network 
gateway, and a Software Defined Network (SDN) 
controller for visualizing network traffic. The network 
traffic and sensor data generated in the testbed are used 
to detect anomalies in the data and identify attacks. The 
attack dataset was created by simulating three attacks in 
the environment. These are man-in-the-middle attacks, 
data injection attacks, and spoofing attacks. The ARGUS 
tool (Argus, 2020) was used to generate a combined 
dataset of network traffic and patient biometric data. 
Temperature, peripheral oxygen saturation, pulse rate, 
systolic blood pressure, diastolic blood pressure, heart 
rate, respiration rate, and ECG ST Segment data are 
among the biometric data. To obtain the overall network 
traffic features, the network traffic flow records and 
their metrics are captured. The dataset contains 12,000 
records out of which 11,000 is the normal traffics and 
1000 as attack traffics, and 44 features in total, 35 of 
which are network traffic features, while 9 are biometric 
features. The output of the dataset is labeled as an attack 
or normal traffic. Attack traffic is labeled “0,” while 
normal traffic is labeled “1’.

3.3.	 Feature scaling

Despite the fact that the features were clean and 
trainable, the numerical discrepancies in the records were 
significant, which impaired the model’s convergence 
time and training effect. As a result, the dataset needed 
to be normalized so that the data in the sample fell 
between [0, 1]. It was essential to avoid the detrimental 
influence of the sample mean and variance because the 
datasets contained both benign and malicious traffic. A 
basic linear normalization procedure, as demonstrated 
in Equation (1), was applied to handle the general 
numerical characteristics:

                

Here, Xmax represented the maximum value and 
Xmin represented the minimum value for each feature 
across all the data. By applying this normalization 
technique, the data values were scaled to a standardized 
range, allowing the model to effectively process and 
learn from the features without being affected by the 
varying scales or magnitudes of the numerical attributes.

We used the MinMaxScaler function from the 
scikit-learn library in Python to perform MinMax 

normalization on the data. This function allows us to 
transform the data to a specified range, in our case, 
between 0 and 1. 

3.4.	 Data augmentation

The dataset was imbalanced, indicating an unequal 
distribution of the target classes. Working with 
imbalanced datasets presents the challenge that the 
model may neglect the minority class and perform poorly 
in predicting it, despite the importance of accurately 
classifying the minority class (Blagus & Lusa, 2013). To 
address this issue, we employed the SMOTE (Synthetic 
Minority Oversampling Technique) approach in our 
work, which involved oversampling the minority class. 
The SMOTE method entailed duplicating examples 
from the minority class, even though these instances did 
not provide any new information to the model. Instead, 
new instances were created by combining existing ones 
(Blagus & Lusa, 2013). The SMOTE algorithm operated 
mathematically through the following steps: 

Step 1: The minority class set, denoted as A, was 
established. For each x A, the k-nearest neighbors of x 
were determined by calculating the Euclidean Distance 
between x and every sample in set A. 

Step 2: The sampling rate N was determined based on 
the imbalanced proportion. For each x A, N examples  
x1, x2, x3, ..., xn) were randomly selected from its 
k-nearest neighbors, forming the set A1. 

Step 3: For each example xk A1 (k = 1, 2, 3, ..., N), a 
new example was generated using the formula shown in 
Equation (2):

Here, rand (0, 1) represented a random number 
between 0 and 1. 

We used SMOTE function from the imbalanced-
learn library in Python. This technique allowed us 
to oversample the minority class and achieve a more 
balanced dataset.

3.5.	 Feature extraction

Dimensionality reduction is a method of feature 
extraction that reduces the number of features in a dataset 
while retaining as much of the original information as 
possible (Zebari et al., 2020). Since our dataset had 
many features, we adopted principal component analysis 
(PCA) for dimensionality reduction. PCA worked by 
identifying the directions (principal components) in 
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which the data varied the most and projecting the data 
onto a lower-dimensional subspace defined by these 
directions (Kherif & Latypova, 2020). We used PCA 
function from the scikit-learn library in Python using 12 
number of components.

3.6.	 Deep neural network

An artificial neural network (ANN) is a computing model 
inspired by the structure and function of the human brain, 
consisting of interconnected neurons organized into 
layers. Deep neural networks (DNNs) are a type of ANN 
that have more than three hidden layers, allowing them 
to model more complex patterns in the data (Allouzi & 
Khan, 2021). In this work, the proposed neural network 
with multiple input vectors and several hidden layers. 
The activation function used in the hidden layers is Relu, 
and the output layer uses a sigmoid activation function 
for binary classification. The learning rate, epochs, and 
batch size are hyperparameters that are tuned during the 
training phase to optimize the performance of the model. 
The learning rate determines the step size at each cycle 
as the model progresses towards the minimum of the 
loss function, and the epochs and batch size control the 
number of training iterations and the size of the training 
samples used in each iteration, respectively. Algorithm1 
described the pseudo-code of our propose model.

Algorithm 1: Algorithmic Description of the proposed model. 
Input: Training data: x and training label: y; 
Randomly initialize parameters W and b; 
1 load the dataset D(xi, yi) 
2 For every xi in D: 
3 X’i = (x-xmin )/(xmax - xmin) // Normalization 
4 end for 
5 For each x’ ϵ Minority class: 
6 	 x’’ = x’+ rand(0,1) * |x’-x’k| // SMOTE
7 end for 
8 While training do: 
9	 Randomly select data point x’’i and its label yi ; 
10 	 Compute the model prediction f(x’’) for x’’i; 
11 	 If yi == f(x’’i) then 
12 		  Continue; 
13 	 Else 
14 Update the parameters W and b; 
15 wi+1 = wi + (yi – f(x’’)) x’’i; 
16 bi+1 = bi + (yi – f(x’’i)); 
17 end if 
18 end while 
19 Output: Trained DNN intrusion detection model.

3.7.	 Weights pruning techniques 

To compress the model, we proposed a method of 
removing weights of neural networks by setting 

unwanted Individual parameters to zero, and make 
the network sparse. This would reduce the number of 
parameters in the model while maintaining the same 
architecture. The pruning process follows the sparsity 
function si that indicates the proportion of pruned 
weights to all prunable weights of ANN, which given by 
(Zhu & Gupta, 2017).

Where si is the sparsity after the itth epoch of training, 
Sstart is the initial sparsity, and send is the target sparsity. 
m is the number of pruning processes, which is related 
to, Sstart,  Sstart and Δ (iend= istart+Δend=istart +mΔi). 
n is the order of the sparsity function, which controls 
the pruning schedule (Zhao & Chi, 2020). Algorithm 
2 provide the pseudo code of the proposed pruning 
algorithm.

Algorithm 2: Algorithmic Description of proposed pruning 
technique. 
Input: training data x, initial sparsity: sstart, Final sparsity 
send, algorithm starting point: istart , algorithm end point: 
iend , pruning frequency: Δi, prunable parameters: W 
1 m = 0; 
2 for i = istart + mΔido 
3 	 update si; 
4 	 Sort the weights in W based on their absolute value; 
5 	 Set the smallest si weights as 0; 
6 	 m = m+1; 
7 end for 
8 for i < iend +1 do 
9 	 Train the prunable parameters of the DNN model 
based on x; 
10 	 i = i+1 
11 end for 
12 Output: Pruned DNN model with parameter W

3.8.	 Evaluation metrics 

Machine learning provides numerous metrics for 
evaluating classifier performance. It is critical to choose 
the appropriate performance measures based on the 
practical requirements of a specific domain. Certain 
classifiers may perform well when examined using one 
metric but poorly when evaluated using another [ (Liu 
et al., 2014). The performance of our proposed model 
will be measured using accuracy, precision, recall, 
sensitivity, and F1-score metrics. Where TP represent 
True Positive, TN represent True Negative, FP represent 
False Positive, and FN represent False Negative.
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3.8.1.	 Accuracy 

It measures how well the model detects intrusions 
or attacks. It calculates the proportion of accurately 
classified intrusion attempts to total inputs (Ahmed et 
al., 2022). It’s calculated as follows: 

            Accuracy =                (3)

3.8.2.	 Precision 

It is the proportion of actions identified by the algorithm 
as attack that are truly attack (Shareena et al., 2021). It is 
calculated as follows: 

Precision =      	                           (4)

3.8.3.	 Recall 

It is the proportion of actual intrusions that were 
predicted as intrusions by the model (Zhang et al., 
2008). It is calculated as follows: 

 Recall =                                         (5)

3.8.4.	 F1-Score 

It is the harmonic mean (reciprocal of the arithmetic 
mean of the reciprocals) of Precision and Recall 
(Shareena et al., 2021). It is calculated as follows: 

F1-Score = 2 *           	 (6)

Where True Positive (TP) is an actual intrusion that 
classified as an intrusion by the IDS, True Negative (TN) 
is an actual non-intrusive event that classified as non-
intrusive by the IDS, False Positive (FP) is an intrusive 
event that classified as non-intrusive by the IDS, False 
Negative (FN) is non-intrusive event classified as 
intrusive action (Taye, 2023).

3.8.5.	 Model Size 

Model file size is typically measured in bytes or kilobytes 
(KB), and it represents the size of the serialized model 
file stored on disk. It includes all the weights, biases, and 
other model-related parameters that need to be saved for 
model persistence or deployment [34]. To calculate the 
model file size, we considered the following equation: 
 	  		

 		 (7)                                                                          
                            

Where S[i] represents the size (in bytes) of the 
parameters in layer i. For example, if a layer has weights 

and biases stored as 32-bit floating-point numbers, you 
would calculate the size as: 
              	   	 (8)                                                                                                                               

Where, N[i] represents the total number of weights 
and biases in layer i, and the factor of 4 represents the 
size of a 32-bit floating-point number in bytes.

3.9.	 Experimental environment setup 

The experiments were conducted in the Google Colab 
environment, which provided a convenient platform 
for running Python code in a Jupyter notebook-like 
environment. The deep learning model was developed 
using the TensorFlow framework, which offers a 
comprehensive set of tools and functionalities for 
building and training neural networks.

3. Results

We defined a Multi-layer Perceptron (MLP) model 
architecture using the Keras library in Python. The 
architecture consisted of an input layer with 12 input 
dimensions and 100 neurons, which utilized the 
Rectified Linear Unit (ReLU) activation function. Four 
hidden layers were defined, each with 512 neurons and 
ReLU activation. Finally, the output layer consisted of 1 
neuron with a sigmoid activation function. To train the 
model we used the following hyperparameters in Table 
1.

Table 1: Hyperparameters used for model training
Hyperparameter Value
Learning Rate 0.001
Batch Size 10
Number of Epochs 100
Optimizer Adam
Loss Function Binary Crossentropy
Validation Split 0.2

These hyperparameters were chosen to optimize the 
training process and achieve the best performance for the 
model. The learning rate determines the step size during 
gradient descent optimization, the batch size determines 
the number of samples processed before updating the 
model, and the number of epochs defines the number 
of complete passes through the entire dataset during 
training. The Adam optimizer combines the advantages 
of Adaptive Gradient Algorithm (AdaGrad) and Root 
Mean Square Propagation (RMSProp) algorithms. 
Binary crossentropy was used as the loss function since 
the task involved binary classification. A validation split 
of 0.2 was used to allocate 20% of the training data for 



248			      		  Technoscience Journal for Community Development in Africa, Vol 4, 2025

validation during model training. After the training we 
got the following result:

Figure 2: Training and validation accuracy

Figure 2 illustrates the consistent and high 
performance of the model on both the training and 
validation datasets. With training and validation 
accuracies reaching 0.98, the model demonstrates 
its ability to accurately predict the target variable. 
The similarity in accuracy between the training and 
validation sets suggests that the model is not overfitting 
the training data. This indicates that the model has 
successfully captured the underlying patterns in the 
data, allowing it to generalize well to unseen examples. 
Thus, the results indicate a strong level of generalization 
and reliable predictions by the model.

Figure 3: Training and validation loss

Figure 3 clearly illustrates the low training and 
validation loss values, further supporting the model’s 
strong generalization capabilities. The convergence 
of both training and validation losses on the graph 
indicates that the model effectively minimizes errors 
during the training process. This suggests that the model 
has learned to capture the essential patterns and features 

of the data without overfitting. The consistency between 
the low training and validation losses, as depicted in the 
graph (Fig. 3), reinforces the reliability of the model’s 
predictions and its ability to generalize well to unseen 
data. Overall, these findings provide additional evidence 
of the model’s robustness and its suitability for accurate 
predictions.

Figure 4: Model AUC

An AUC of 1.0 indicates that the model has 
achieved a perfect discrimination between the positive 
and negative classes. It suggests that the model correctly 
ranks all positive instances above negative instances, 
resulting in a flawless separation. This exceptional AUC 
score further validates the model’s ability to distinguish 
between the target classes accurately. Thus, we can 
confidently conclude that the model exhibits outstanding 
predictive performance with a flawless discriminatory 
power, as evidenced by the achieved AUC of 1.0.

Figure 5: Confusion matrix
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The confusion matrix indicates that model demonstrates 
a high level of accuracy in predicting the target variable, 
with a significant number of True Positives (TP) and 
True Negatives (TN). TP = 2752 indicates that the model 
correctly identified 2752 positive instances, while TN = 
2767 indicates that it accurately classified 2767 instances 
as negative.  Although the model’s performance is 
generally strong, it is worth noting that it did have a few 
misclassifications. The number of False Positives (FP) 
is 73, indicating instances that were wrongly predicted 
as positive when they were actually negative. Similarly, 
there are 58 instances classified as False Negatives 
(FN), indicating instances that were wrongly predicted 
as negative when they were actually positive. While 
these misclassifications exist, they represent a relatively 
small proportion of the overall dataset. The high number 
of TP and TN, along with the low values of FP and FN, 
suggest that the model has a good ability to discriminate 
between positive and negative instances.

Table 2: Result Summary
Accuracy Precision Recall F1 score size
0.98 0.98 0.98 0.98 1MB 

Table 2 presents a summary of the results obtained 
after training the model. The performance metrics 
provide insights into the model’s effectiveness in 
predicting the target variable. The accuracy of the model 
is 0.98, indicating that it correctly predicts the target 
variable for 98% of the instances. A high accuracy score 
suggests that the model performs well in classifying 
both positive and negative instances. The precision of 
the model is 0.98, which signifies the proportion of 
correctly predicted positive instances out of all instances 
predicted as positive. This indicates that the model 
has a high precision in identifying positive instances. 
The recall of the model is also 0.98, representing the 
proportion of correctly predicted positive instances 
out of all actual positive instances. A high recall score 
suggests that the model effectively captures the positive 
instances in the dataset. The F1 score is a harmonic mean 
of precision and recall, providing a balanced measure of 
the model’s performance. With an F1 score of 0.98, the 
model demonstrates a strong balance between precision 
and recall.

4.1.	 Pruning the weights of the trained model.

We used tensorflow_model_optimization.sparsity.
keras module and pruned our trained model using the 
following hyperparameters listed in  Table 3 .

Table 3: Hyperparameters used in model pruning
Hyperparameters Values 

Initial Sparsity 0.50 
Final Sparsity 0.90 
Begin Step 0 
End Step 100 

The initial sparsity defines the starting point of the 
pruning process. It represents the percentage of weights 
that are initially pruned (set to zero). The initial sparsity 
of 0.50, means that 50% of the weights in the model 
are initially pruned. The final sparsity represents the 
target sparsity level to be achieved at the end of the 
pruning process. It defines the percentage of weights 
that will eventually be pruned. The final sparsity of 0.90, 
indicating that the pruning process aims to prune 90% 
of the weights in the model. The begin step determines 
when the pruning process starts. It specifies the training 
step or epoch at which the pruning begins. The begin 
step of 0, indicating that pruning starts from the 
beginning of the training process. The end step indicates 
the training step or epoch at which the pruning process 
ends. It defines the point in the training process when the 
desired final sparsity should be reached. The end step is 
set to 100, indicating that the pruning process should be 
completed after 100 training steps or epochs.

4.2.	 Fine tuning the pruned model

We retrained the pruned model with the same 
hyperparameters as the baseline model but reduced the 
number of epochs to 10. We also updated the pruned 
weights using tfmot.sparsity.keras.UpdatePruningStep. 
Figure 6 shows the results obtained from evaluating the 
pruned model.

Figure 6: AUC of the pruned model
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A comparative analysis between the proposed PCA-
DNN model and existing intrusion detection approaches 
for IoMT environments clearly demonstrate that the 
proposed model outperforms prior studies in terms of 
detection accuracy while also addressing the critical 
constraint of model size.

Compared with the KNN-based approach by Hady 
et al. (2020), which achieved an accuracy of 90%, and 
the tree-based classifier proposed by Gupta et al. (2022) 
with 93% accuracy, the proposed PCA-DNN model 
achieved a substantially higher accuracy of 98%. This 
improvement highlights the advantage of deep learning 
models when combined with effective feature reduction 
techniques in capturing complex attack patterns within 
IoMT traffic.

Furthermore, when compared to the PSO-
DNN model introduced by Chaganti et al. (2022), 
which reported a 96% accuracy with a model size of 
approximately 1 MB, the proposed model not only 
improves detection accuracy but also maintains 
comparable storage requirements prior to pruning. This 
demonstrates that replacing feature optimization via 
particle swarm optimization with Principal Component 
Analysis can yield better generalization while reducing 
feature redundancy.

A key contribution of this study is the pruning of 
the PCA-DNN model, which reduced the model size 
from 1 MB to 84 KB, while retaining a high accuracy 
of 97%. This result is particularly significant for 
resource-constrained IoMT devices, where memory 
and computational power are limited. Although pruning 
led to a slight reduction in accuracy (from 0.98 to 
0.97), a paired t-test confirmed that the difference was 
not statistically significant, indicating that pruning 
effectively reduces computational and storage overhead 
without meaningful performance degradation.

After applying pruning techniques to reduce the 
complexity of the model, we observed a slight decrease 
in the AUC value from 1.0 to 0.99. However, it is 
important to note that an AUC of 0.99 still indicates 
excellent performance and a high level of discrimination 
between positive and negative classes.

Figure 7: Confusion matrix of pruned model

Table 4: Pruned Model Results Summary
Accuracy Precision Recall F1-score size
0.98 0.97 0.98 0.97 84KB 

The results in Table 4 indicate that the pruned 
model maintains a high level of performance even 
after the pruning process, suggesting that unnecessary 
or less significant weights were successfully removed 
without significantly impacting the model’s predictive 
capabilities. It demonstrates the effectiveness of the 
pruning technique in reducing model complexity while 
preserving performance. Pruning the model allowed us to 
achieve a more efficient and streamlined model without 
significantly sacrificing its accuracy. This demonstrates 
the effectiveness of the pruning technique in optimizing 
the model for resource-constrained environments, such 
as IoMT nodes with limited processing power and 
memory capacity. Therefore, the pruned model retains a 
high level of performance and offers improved efficiency 
for real-world deployment. These results highlight the 
potential of our approach in developing lightweight and 
efficient deep learning models for IoMT applications.

4.3.	 Results comparison

We present a detailed comparison of our model with 
state-of-the-art models in the field. The comparison 
aims to evaluate the performance and effectiveness of 
our proposed model in addressing the research problem. 
By comparing our model to existing approaches, we can 
gain insights into its strengths, weaknesses, and potential 

contributions to the field. The evaluation metrics used 
for comparison include accuracy, precision, recall, F1-
score, and model size. Table 5 provides a comprehensive 
overview of the performance metrics and model sizes 
of our model and selected state-of-the-art models. This 
analysis will serve as a foundation for discussing the 
superiority and advancements of our approach.

Table 5: Comparison with the existing models
Author Method Accuracy Size
(Hady et al., 2020) KNN 90% -
(Gupta et al., 2022) Tree based 

classifier
93% -

(Chaganti etal., 2022) PSO-DNN 96% 1MB
Proposed model PCA-DNN 98% 1MB
Pruned model PCA-DNN 97% 84KB
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The implications of these findings are substantial 
for real-time healthcare systems. High recall values 
imply a lower false-negative rate, which is crucial in 
IoMT environments where undetected attacks may 
compromise patient safety. Overall, the proposed 
PCA-DNN and its pruned variant provide a superior 
balance between accuracy, efficiency, and lightweight 
deployment, outperforming existing IoMT intrusion 
detection models and making them well-suited for real-
world healthcare applications.

5. Conclusion and recommendation

This study presented a lightweight deep learning model for 
intrusion detection in Internet of Medical Things (IoMT) 
devices using Principal Component Analysis (PCA) for 
dimensionality reduction and weight pruning for model 
compression. The proposed PCA-DNN achieved 98% 
accuracy with a model size of 84 KB, outperforming 
prior state-of-the-art techniques. A major contribution 
of this work is the introduction of a pruning algorithm 
that makes the neural network sparse by setting the less 
significant weights to zero. This approach effectively 
reduces computational and memory requirements while 
preserving high detection performance. The pruning 
process significantly optimized the model’s complexity, 
enabling deployment on resource-constrained IoMT 
devices without substantial loss in accuracy. The results 
confirm that the proposed method provides an efficient 
and practical solution for securing IoMT systems. Future 
work will focus on evaluating the model’s performance 
on larger and more diverse datasets and investigating its 
robustness against adversarial attacks to further enhance 
reliability in real-world medical IoT environments. 
Also, k-fold cross-validation and evaluation on external 
datasets can be performed to validate the model’s 
generalizability across different IoMT environments.
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