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Abstract: The Internet of Medical Things (IoMT) has transformed modern healthcare by enabling seamless data collection
and monitoring through connected medical devices. However, the growing interconnectivity of these devices exposes them
to serious cyber security threats, such as unauthorized access, data tampering, and denial-of-service attacks. These risks are
heightened by the limited computing and memory resources of IoMT devices, which make traditional intrusion detection
systems unsuitable. This study proposes a lightweight deep neural network model optimized for resource-constrained loMT
environments. The model integrates Principal Component Analysis (PCA) for dimensionality reduction and weight pruning
techniques to minimize model complexity while maintaining high detection performance. Experimental results demonstrate a
significant reduction in model size to 84 KB with 98% detection accuracy, outperforming state-of-the-art methods. This research
provides an efficient and deployable security solution that strengthens the resilience of [oMT devices without overwhelming
their limited computational capacity.
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1. Introduction are a major component of Internet of Medical Things.
As an alternative to keeping patients in hospitals these
devices are able to monitor the patient’s health constantly
inreal-time, and giving them superior physical flexibility
and mobility. In another development, medical robots
are also capable of accurately executing minor surgeries.

The Internet of Things (IoT) is a connection
of internet-connected objects (nodes) that can send
and receive or transfer data over a wireless network
without human intervention. The nodes in IoT network

can be medical sensors, fitness trackers, smart car, Also, they are capable of performing some medical tasks

smart wat.ches, etc. (A}.n.nad. et al., 2022). The. IoT has like Cardio-Pulmonary Resuscitation (CPR) (Yaacoub
an extensive applicability in several areas, including et al., 2020)

healthcare. Internet of medical things (IoMT) is a subset
of [oT that amalgamate medical devices and applications
that can connect to health care information technology
systems using networking technologies (Hameed et al.,
2021). Wireless Body Area Networks (WBAN) that
contains of wearable and implanted medical devices
connecting to and monitoring various parts of the body

IoMT is a domain of connected sensors, wearable
tools, medical devices, and clinical frameworks. It
allows several applications of human services to reduce
costs of social insurance, give proper clinical responses,
and target medical treatment. Due to advancements in
remote communication, sensor systems, mobile phones,
big data analysis, and distributed computing, [oMT is
changing the human services industry by providing
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customized medical treatment and standardizing the
communication of clinical information (Rasool et
al., 2022). IoMT has great impact with the advent of
Industry 4.0, such as the integration of the automobile
industry with IoMT. The digital pillars of Industry 4.0
augmented reality, virtual reality, artificial intelligence,
machine learning, and sensors are shaping the future
of the medical world. The embedded sensors in the
IoMT paradigm enable the continuous monitoring of
critical parameters such as ECG, heart rate, blood sugar
level, temperature, and respiration. The integration of
medical embedded devices, equipment, and the internet
allows for the implementation of smart intensive care
units (ICUs), smart thermal scanners, medical asset
administration, and smart pill dispensers (Yaacoub et
al., 2020).

Despite all the benefits and projected evolution in
the [oMT, severe security concerns patients’ confidential
information stealing, Distributed Denial of Service
(DDoS) need attention to protect networks and devices
from vulnerabilities and various known and unknown
cyber-attacks. Networks and loMT devices are vulnerable
to various security threats. Without a comprehensive
solution to protect against known and zero-day attacks,
critical issues such as data breaches, false diagnostics,
fatal accidents due to equipment failure, and Distributed
Denial of Service (DDoS) attacks can happen. The
most dangerous in IoMT is DDoS, which shut down the
critical services or make them unresponsive which can
cause great harm to the patients (Ahmad et al., 2022).

Unlike traditional networks, IoMT network nodes
have limited resources and low capacity and sometime
have control manually. Thus, these ubiquitous devices
usually become vulnerable to the attackers. Since many
unique and variants of cyber-attacks being generated
daily, there is a growing concern for the security of
these devices (Shareena et al., 2021). For years several
security solutions are developed of which some of them
have shown promising result to prevent certain types of
attacks. Likewise, quick and effective attack detection
are needed as the [oMT devices generates huge amount
of data. The common occurring attacks in [oT networks
are botnets, DoS, man-in-the-middle, infiltration,
identity and data theft, ransom ware, etc. Among them,
botnet attacks are very common and preventing them
entirely would not be possible as their behavior changes
over the period (Nguyen et al., 2022).

Although IoMT is involved in large-scale service
supplyinthemedical paradigm, theirresource constrained
nature exposes them to significant security and privacy
challenges. These flaws are not only devastating for
[IoMT, but also imperil the entire healthcare ecosystem,

putting human lives in jeopardy. Due to their varied
character, substantial normal behavior, and the increase
in vulnerabilities owing to the exponential proliferation
of 1oT devices, traditional intrusion detection systems
(IDS) are inadequate in the [oMT context (Ahmad &
Alsmadi, 2021). Several researchers (Allouzi & Khan,
2021; Dina & Manivannan, 2021; Xin et al., 2018;
Zhang et al., 2008) have contributed significantly to the
development of intrusion detection systems in [oMTs.
Deep learning algorithms have recently shown positive
performance in safeguarding IoMT networks and
devices. Hence, deep learning models require a lot of
computational power, which may be too much for the
low-capacity nodes in IoMT networks (Rahman et al.,
2020). In-order to detect the botnet activity on [oMT
devices, this study proposed a Deep Learning (DL)
strategy for detecting intrusion attacks in [oMT devices.
Deep learning, a subset of Machine Learning (ML) (Ge
et al., 2019), is well-known for its superior problem-
solving capabilities and efficiency when dealing with
large amounts of data. According to the literature, DL
can be employed effectively in a wide range of cyber
security applications (Jagannath et al., 2019). To detect
botnet activity on IoMT devices, we propose a deep
neural network (DL) model and compressed it using
neural network weight pruning technique (Zhu & Gupta,
2017). The DL algorithms are effective when there is a
vast amount of data or a pattern to be recognized (Taye,
2023).

2. Related Works

Several researchers have proposed different machine
learning approaches to monitor and detect attacks on
IoT networks. McDermott et al. (2018) proposed a
deep learning strategy that combines a Bidirectional
Long Short-Term Memory Recurrent Neural Network
(BLSTM-RNN) with word embedding to transform
string data extracted from captured packets into a
representation suitable for BLSTM-RNN-based botnet
identification. The data for training and evaluation
was obtained from GitHub. The model reached 99%
accuracy, although LSTM adds overhead and increases
processing time. As a result, the model is incompatible
with low-resource loT devices.

To detect an intruder attempting to inject extraneous
data In an IoT network, Jan et al. (2019) proposed a
lightweight intrusion detection model based on a support
vector machine (SVM). The authors reduced system
processing time by relying on a single feature packet
arrival rate rather than multiple network attributes. The
SVM-based classifier was then used to determine if the
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input sample was normal or intruded. The model was
tested using the CICIDS2017 dataset, and it achieved
98.03% accuracy. In order to identify infiltration in IoT
devices, a single feature attribute is insufficient.

To distinguish network traffic as benign or malicious,
Ge et al. (2019) proposed a binary classification model
based on a feed-forward neural network. The model
was evaluated using the Bot-IoT dataset. Although
their model attained a high accuracy of 92% for binary
classification, it suffers from a poor accuracy of 82%
for multiclass classification because their model is
confused by subcategories of assaults within the same
category. Almogren (2020) also proposed an edge-based
intrusion detection strategy using a deep belief network.
The system includes three components: data gathering,
feature extraction, and detection. The UNSW-NB15
dataset was used in the evaluation. The model’s accuracy
is 85%, making it ineffective for intrusion detection. As
a result, accuracy should be enhanced.

Li et al. (2020) proposed a multi—convolutional
neural network (multi-CNN) fusion approach for
intrusion detection. The one-dimensional feature data is
transformed into a grayscale graph before being input
into the CNN for classification. The NSL-KDD dataset
was utilized to train and validate the CNN model, yielding
accuracy of 86.95% for binary classification and 76.67%
for multiclass classification on the KDDTest and KDD
Test2, respectively. As a result, their approach needs
future improvement. Rahman et al. (2020) proposed
two parallel techniques in which parallel models were
developed to correspond to partitioned attack datasets,
thereby distributing the computational workload. The
parallel models are used initially for side-by-side feature
selections, followed by a single multi-layer perceptron
classification operating on the fog side. In the distributed
case, the parallel models conduct both feature selection
and multi-layer perceptron classification independently,
after which the outputs are integrated by a coordinating
edge or fog to make the final judgment. With 97.80%
accuracy, the Aegean Wi-Fi Intrusion Dataset (AWID)
was used for evaluation. The dataset utilized is out of
date and does not relate to [oT.

In the fog node, a network intrusion detection system
based on the Exact Greedy Boosting ensemble approach
was proposed by Reddy et al. (2021). The algorithm
analyzes nodes and networks to detect intrusions and
alerts users when threats are identified. The accuracy for
binary, multiclass, and subcategory was 99.6%, 96.7%,
and 84%, respectively. The system was evaluated
using the [oTID20 simulated environment dataset.
Because their work focused on data from the simulated

environment, it might lead to a variety of challenges
based on real-time data.

Nimbalkar and Kshirsagar (2021) proposed a
feature selection approach for intrusion detection
in [oT that utilizes Information Gain (IG) and Gain
Ratio (GR), selecting the top 50% of features for
DDoS attack detection. The system generates
feature subsets by performing insertion and union
operations on subsets generated by ranking 50%
IG and GR features. The approach was examined
and validated using a JRipclassifier with 99.99%
accuracy and 16.5s detection time on the IoT-BoT
and KDD Cup 1999 datasets, respectively. As a
result, the model has a high time complexity for
detecting attack in IoMT. To identify intrusion in
the fog layer of an IoT network, Kan et al. (2021)
developed a technique combining adaptive particle
swarm optimization (APSO) with a convolutional
neural network (CNN). The APSO adaptively
optimizes the structure parameters of a one-
dimensional CNN as well as the loss function
value of training the CNN as the PSO fitness value.
During evaluation, 96% accuracy was reached.
Despite the fact that an optimization approach
was applied at the data level, the model has a high
time complexity. As a result, optimization at the
algorithm level is required.

Shareenaet al. (2021) presented a complex deep
neural network to predict whether network traffic
is malicious. The Bot-IoT dataset was used for
training and evaluation, achieving 94% accuracy.
However, there is no evidence that their model is
lightweight, making it unsuitable for low-resource
devices. Rambabu and Venkatram (2021) proposed
a technique to reduce the computation time of an
intrusion detection system by employing K-nearest
Neighbor (KNN) for dimensionality reduction and
ensemble classification using traffic flow metrics
(ECTFM). The NLS-KDD dataset was used for
training, achieving 96% accuracy. Nonetheless,
data-level optimization is not practical for IoT
device intrusion detection.

Su, He, and Wu (2022) trained decision trees,
random forests, and gradient-boosting machines
(GBM) for IoT threat detection and compared
their performance using the IoT 2020 dataset.
The decision tree has a higher accuracy of 98%,
however the random forest has a higher AUC of
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99%. Because a minor change in the data might
create a huge change in the structure of the decision
tree, generating instability, the decision tree model
is not a better solution for intrusion detection.
Hameed et al. (2021) presented a hybrid lightweight
intrusion detection system for IoMT fog attack
detection. The system employs six incremental
classifiers: Weighted Hoeffding Tree Ensemble,
K-Nearest Neighbors, Naive Bayes, Hoeftfding
Tree Majority Class, Hoeffding Tree Naive Bayes,
and Hoeftding Tree Naive Bayes Adaptive. They
gathered and retrieved data from seven disparate
sensors, including an loT-fridge, a garage door, a
GPS tracker, Modbus, a sensor light, a thermostat,
and a weather sensor. By using a sliding window to
configure the ML classifiers. They report accuracy
of 92.9%, a model space complexity of 6 MiB,
and an execution time of 21 seconds. Because the
system employs incremental learning, increasing
the number of instances results in an increase in
execution time. Performance varied across sample
frequencies, indicating that their methodologies
were not robust and were influenced by concept
drift in the data.

Most closely related to our work is Chaganti
et al. (2022), who proposed using Particle Swarm
Optimization (PSO) for feature extraction and a
deep neural network (DNN) for detecting attacks
in IoMT networks. They trained and evaluated
their model with imbalanced IoMT network traffic
and patient biometric datasets. They thoroughly
analyzed different machine learning and deep
learning algorithm including Logistic Regression
(LR), K-Nearest Neighbor (KNN), Decision Tree,
AdaBoost, Random Forest (RF), Support Vector
Machine (SVM), Deep Neural Networks (DNN),
Convolutional Neural Network (CNN), Long
Short-Term Memory (LSTM), They reported
that DNN perform better and achieved accuracy
of 96%, precision of 95% and recall of 95%.
Although, the model achieved high accuracy but
lack generalization and the performance can still be
enhanced. Medical devices have limited processing
power and storage capacity, which can make it
difficult to run resource-intensive DNNs.

To build upon the work of Chaganti et al.
(2022), we propose using Principal Component
Analysis (PCA) as a dimensionality reduction

technique to decrease the complexity of the data.
By applying PCA, we aimed to capture the most
important features of the dataset while reducing its
dimensionality. To address the issue of imbalanced
data, we employed the Synthetic Minority Over-
sampling Technique (SMOTE). Considering the
resource constraints of Internet of Medical Things
(IoMT) devices, we proposed a compression
technique that involved pruning the less significant
weights of the model. By eliminating the less
significant weights, we aimed to reduce the model’s
size and computational requirements, making itmore
suitable for deployment on resource-constrained
IoMT devices. To ensure that the compressed
model maintained its accuracy, we performed fine-
tuning. This process involved retraining the model
using the pruned weights as a starting point and
further optimizing it to achieve a balance between
model size and performance.

3. Materials and methods

This section presented the methodology used in the
research. The overall framework and steps employed in
the research are depicted in Figure 3.1. The framework
served as a guide for the execution of the research,
while the steps outlined the systematic approach that
was followed throughout the study. By adhering to
this methodology, the research aimed to ensure rigor,
reliability, and validity in the investigation process.

3.1 Research framework

Figure 1: Proposed approach
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3.2. Dataset used

Hady et al. (2020) used a real-time health monitoring
testbed to create the dataset. The testbed consists of
sensor devices attached to the patient’s body, a network
gateway, and a Software Defined Network (SDN)
controller for visualizing network traffic. The network
traffic and sensor data generated in the testbed are used
to detect anomalies in the data and identify attacks. The
attack dataset was created by simulating three attacks in
the environment. These are man-in-the-middle attacks,
data injection attacks, and spoofing attacks. The ARGUS
tool (Argus, 2020) was used to generate a combined
dataset of network traffic and patient biometric data.
Temperature, peripheral oxygen saturation, pulse rate,
systolic blood pressure, diastolic blood pressure, heart
rate, respiration rate, and ECG ST Segment data are
among the biometric data. To obtain the overall network
traffic features, the network traffic flow records and
their metrics are captured. The dataset contains 12,000
records out of which 11,000 is the normal traffics and
1000 as attack traffics, and 44 features in total, 35 of
which are network traffic features, while 9 are biometric
features. The output of the dataset is labeled as an attack
or normal traffic. Attack traffic is labeled “0,” while
normal traffic is labeled “1°.

3.3. Feature scaling

Despite the fact that the features were clean and
trainable, the numerical discrepancies in the records were
significant, which impaired the model’s convergence
time and training effect. As a result, the dataset needed
to be normalized so that the data in the sample fell
between [0, 1]. It was essential to avoid the detrimental
influence of the sample mean and variance because the
datasets contained both benign and malicious traffic. A
basic linear normalization procedure, as demonstrated
in Equation (1), was applied to handle the general
numerical characteristics:

X — Xmin
Xmax — Xmin

X =

Here, Xmax represented the maximum value and
Xmin represented the minimum value for each feature
across all the data. By applying this normalization
technique, the data values were scaled to a standardized
range, allowing the model to effectively process and
learn from the features without being affected by the
varying scales or magnitudes of the numerical attributes.

We used the MinMaxScaler function from the
scikit-learn library in Python to perform MinMax

normalization on the data. This function allows us to
transform the data to a specified range, in our case,
between 0 and 1.

3.4. Data augmentation

The dataset was imbalanced, indicating an unequal
distribution of the target classes. Working with
imbalanced datasets presents the challenge that the
model may neglect the minority class and perform poorly
in predicting it, despite the importance of accurately
classifying the minority class (Blagus & Lusa, 2013). To
address this issue, we employed the SMOTE (Synthetic
Minority Oversampling Technique) approach in our
work, which involved oversampling the minority class.
The SMOTE method entailed duplicating examples
from the minority class, even though these instances did
not provide any new information to the model. Instead,
new instances were created by combining existing ones
(Blagus & Lusa, 2013). The SMOTE algorithm operated
mathematically through the following steps:

Step 1: The minority class set, denoted as A, was
established. For each x A, the k-nearest neighbors of x
were determined by calculating the Euclidean Distance
between x and every sample in set A.

Step 2: The sampling rate N was determined based on
the imbalanced proportion. For each x A, N examples
x1, x2, x3, ..., xn) were randomly selected from its
k-nearest neighbors, forming the set Al.

Step 3: For each example xk A1 (k=1,2, 3, ...,N), a
new example was generated using the formula shown in
Equation (2):

X' =x+rand(0,1) = |x — xk|

Here, rand (0, 1) represented a random number
between 0 and 1.

We used SMOTE function from the imbalanced-
learn library in Python. This technique allowed us
to oversample the minority class and achieve a more
balanced dataset.

3.5. Feature extraction

Dimensionality reduction is a method of feature
extraction that reduces the number of features in a dataset
while retaining as much of the original information as
possible (Zebari et al., 2020). Since our dataset had
many features, we adopted principal component analysis
(PCA) for dimensionality reduction. PCA worked by
identifying the directions (principal components) in
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which the data varied the most and projecting the data
onto a lower-dimensional subspace defined by these
directions (Kherif & Latypova, 2020). We used PCA
function from the scikit-learn library in Python using 12
number of components.

3.6. Deep neural network

An artificial neural network (ANN) is a computing model
inspired by the structure and function of the human brain,
consisting of interconnected neurons organized into
layers. Deep neural networks (DNNs) are a type of ANN
that have more than three hidden layers, allowing them
to model more complex patterns in the data (Allouzi &
Khan, 2021). In this work, the proposed neural network
with multiple input vectors and several hidden layers.
The activation function used in the hidden layers is Relu,
and the output layer uses a sigmoid activation function
for binary classification. The learning rate, epochs, and
batch size are hyperparameters that are tuned during the
training phase to optimize the performance of the model.
The learning rate determines the step size at each cycle
as the model progresses towards the minimum of the
loss function, and the epochs and batch size control the
number of training iterations and the size of the training
samples used in each iteration, respectively. Algorithm1
described the pseudo-code of our propose model.

Algorithm 1: Algorithmic Description of the proposed model.
Input: Training data: x and training label: y;
Randomly initialize parameters W and b,

1 load the dataset D(xi, yi)

2 For every xi in D:

3 X'i = (x-xmin )/(xmax - xmin) // Normalization

4 end for

5 For each x’ € Minority class:

6 x”=x"+rand(0,1) * |x’-x’k| / SMOTE

7 end for

8 While training do:

9 Randomly select data point x i and its label yi ;
10 Compute the model prediction f(x”) for x”’i;
11 If yi == f(x"i) then

12 Continue;

13 Else

14 Update the parameters W and b;

15 witl =wi + (yi—fix")) x"i;

16 bi+1 = bi + (yi —f(x ")),

17 end if

18 end while

19 Output: Trained DNN intrusion detection model.

3.7. Weights pruning techniques

To compress the model, we proposed a method of
removing weights of neural networks by setting

unwanted Individual parameters to zero, and make
the network sparse. This would reduce the number of
parameters in the model while maintaining the same
architecture. The pruning process follows the sparsity
function si that indicates the proportion of pruned
weights to all prunable weights of ANN, which given by
(Zhu & Gupta, 2017).

istart + (1 — 1AL, fopa}

Where si is the sparsity after the itth epoch of training,
Sstart is the initial sparsity, and send is the target sparsity.
m is the number of pruning processes, which is related
to, Sstart, Sstart and A (iend= igsqtAend=istart +mAi).
n is the order of the sparsity function, which controls
the pruning schedule (Zhao & Chi, 2020). Algorithm
2 provide the pseudo code of the proposed pruning
algorithm.

Algorithm 2: Algorithmic Description of proposed pruning
technique.

Input: training data x, initial sparsity: sstart, Final sparsity
send, algorithm starting point: istart , algorithm end point:
iend , pruning frequency: Ai, prunable parameters: W
1m=0;

2 for i = istart + mAido

3 update si;

4 Sort the weights in W based on their absolute value;
5 Set the smallest si weights as 0;

6 m=m+l1;

7 end for

8 fori <iend +1 do

9 Train the prunable parameters of the DNN model
based on x;

10 i=i+l

11 end for

12 Output: Pruned DNN model with parameter W

3.8. Evaluation metrics

Machine learning provides numerous metrics for
evaluating classifier performance. It is critical to choose
the appropriate performance measures based on the
practical requirements of a specific domain. Certain
classifiers may perform well when examined using one
metric but poorly when evaluated using another [ (Liu
et al., 2014). The performance of our proposed model
will be measured using accuracy, precision, recall,
sensitivity, and F1-score metrics. Where TP represent
True Positive, TN represent True Negative, FP represent
False Positive, and FN represent False Negative.
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3.8.1. Accuracy

It measures how well the model detects intrusions
or attacks. It calculates the proportion of accurately
classified intrusion attempts to total inputs (Ahmed et

al., 2022). It’s calculated as follows:
TP+TN

Accuracy = TP+TN+EN 3)

3.8.2. Precision

It is the proportion of actions identified by the algorithm
as attack that are truly attack (Shareena et al., 2021). It is
calculated as follows:

TP
Precision = TP+FP (4)
3.8.3. Recall

It is the proportion of actual intrusions that were
predicted as intrusions by the model (Zhang et al.,

2008). It is calculated as follows:
TP

Recall=  TP+EN (5)

3.8.4. F1-Score

It is the harmonic mean (reciprocal of the arithmetic
mean of the reciprocals) of Precision and Recall

(Shareena et al., 2021). It is calculated as follows:
Precision * Recall

Precision + Recall (6)

F1-Score =2 *

Where True Positive (TP) is an actual intrusion that
classified as an intrusion by the IDS, True Negative (TN)
is an actual non-intrusive event that classified as non-
intrusive by the IDS, False Positive (FP) is an intrusive
event that classified as non-intrusive by the IDS, False
Negative (FN) is non-intrusive event classified as
intrusive action (Taye, 2023).

3.8.5. Model Size

Model file size is typically measured in bytes or kilobytes
(KB), and it represents the size of the serialized model
file stored on disk. It includes all the weights, biases, and
other model-related parameters that need to be saved for
model persistence or deployment [34]. To calculate the
model file size, we considered the following equation:

Model size = Y, (i =1 to L)(s[i]) (7)

Where S[i] represents the size (in bytes) of the
parameters in layer i. For example, if a layer has weights

and biases stored as 32-bit floating-point numbers, you
would calculate the size as:
Slil = (N[i] +1) *4 (®)
Where, N[i] represents the total number of weights
and biases in layer i, and the factor of 4 represents the
size of a 32-bit floating-point number in bytes.

3.9. Experimental environment setup

The experiments were conducted in the Google Colab
environment, which provided a convenient platform
for running Python code in a Jupyter notebook-like
environment. The deep learning model was developed
using the TensorFlow framework, which offers a
comprehensive set of tools and functionalities for
building and training neural networks.

3. Results

We defined a Multi-layer Perceptron (MLP) model
architecture using the Keras library in Python. The
architecture consisted of an input layer with 12 input
dimensions and 100 neurons, which utilized the
Rectified Linear Unit (ReLU) activation function. Four
hidden layers were defined, each with 512 neurons and
ReLU activation. Finally, the output layer consisted of 1
neuron with a sigmoid activation function. To train the
model we used the following hyperparameters in Table
1.

Table 1: Hyperparameters used for model training

Hyperparameter Value

Learning Rate 0.001

Batch Size 10

Number of Epochs 100

Optimizer Adam

Loss Function Binary Crossentropy
Validation Split 0.2

These hyperparameters were chosen to optimize the
training process and achieve the best performance for the
model. The learning rate determines the step size during
gradient descent optimization, the batch size determines
the number of samples processed before updating the
model, and the number of epochs defines the number
of complete passes through the entire dataset during
training. The Adam optimizer combines the advantages
of Adaptive Gradient Algorithm (AdaGrad) and Root
Mean Square Propagation (RMSProp) algorithms.
Binary crossentropy was used as the loss function since
the task involved binary classification. A validation split
of 0.2 was used to allocate 20% of the training data for
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validation during model training. After the training we
got the following result:

Training and Validation Accuracy

0.95 1

0.80 1

Training Accuracy
——— Validation Accuracy

T T T T
40 60 80 100
Epoch

o 20
Figure 2: Training and validation accuracy

Figure 2 illustrates the consistent and high
performance of the model on both the training and
validation datasets. With training and wvalidation
accuracies reaching 0.98, the model demonstrates
its ability to accurately predict the target variable.
The similarity in accuracy between the training and
validation sets suggests that the model is not overfitting
the training data. This indicates that the model has
successfully captured the underlying patterns in the
data, allowing it to generalize well to unseen examples.
Thus, the results indicate a strong level of generalization
and reliable predictions by the model.

Training and Validation Loss

0.51 —— Training Loss
—— Validation Loss
0.4 4
w 0.3
w
S
0.2
0.1 A
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Figure 3: Training and validation loss

Figure 3 clearly illustrates the low training and
validation loss values, further supporting the model’s
strong generalization capabilities. The convergence
of both training and validation losses on the graph
indicates that the model effectively minimizes errors
during the training process. This suggests that the model
has learned to capture the essential patterns and features

of the data without overfitting. The consistency between
the low training and validation losses, as depicted in the
graph (Fig. 3), reinforces the reliability of the model’s
predictions and its ability to generalize well to unseen
data. Overall, these findings provide additional evidence
of the model’s robustness and its suitability for accurate
predictions.

Receiver Operating Characteristic (ROC) Curve
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Figure 4: Model AUC

An AUC of 1.0 indicates that the model has
achieved a perfect discrimination between the positive
and negative classes. It suggests that the model correctly
ranks all positive instances above negative instances,
resulting in a flawless separation. This exceptional AUC
score further validates the model’s ability to distinguish
between the target classes accurately. Thus, we can
confidently conclude that the model exhibits outstanding
predictive performance with a flawless discriminatory
power, as evidenced by the achieved AUC of 1.0.

Confusion Matrix

True Labels

Predicted Labels

Figure 5: Confusion matrix
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The confusion matrix indicates that model demonstrates
a high level of accuracy in predicting the target variable,
with a significant number of True Positives (TP) and
True Negatives (TN). TP =2752 indicates that the model
correctly identified 2752 positive instances, while TN =
2767 indicates that it accurately classified 2767 instances
as negative. Although the model’s performance is
generally strong, it is worth noting that it did have a few
misclassifications. The number of False Positives (FP)
is 73, indicating instances that were wrongly predicted
as positive when they were actually negative. Similarly,
there are 58 instances classified as False Negatives
(FN), indicating instances that were wrongly predicted
as negative when they were actually positive. While
these misclassifications exist, they represent a relatively
small proportion of the overall dataset. The high number
of TP and TN, along with the low values of FP and FN,
suggest that the model has a good ability to discriminate
between positive and negative instances.

Table 2: Result Summary
Accuracy  Precision Recall

0.98 0.98 0.98 0.98

F1I score  size
IMB

Table 2 presents a summary of the results obtained
after training the model. The performance metrics
provide insights into the model’s effectiveness in
predicting the target variable. The accuracy of the model
is 0.98, indicating that it correctly predicts the target
variable for 98% of the instances. A high accuracy score
suggests that the model performs well in classifying
both positive and negative instances. The precision of
the model is 0.98, which signifies the proportion of
correctly predicted positive instances out of all instances
predicted as positive. This indicates that the model
has a high precision in identifying positive instances.
The recall of the model is also 0.98, representing the
proportion of correctly predicted positive instances
out of all actual positive instances. A high recall score
suggests that the model effectively captures the positive
instances in the dataset. The F1 score is a harmonic mean
of precision and recall, providing a balanced measure of
the model’s performance. With an F1 score of 0.98, the
model demonstrates a strong balance between precision
and recall.

4.1. Pruning the weights of the trained model.

We used tensorflow _model optimization.sparsity.
keras module and pruned our trained model using the
following hyperparameters listed in Table 3 .

Table 3: Hyperparameters used in model pruning

Hyperparameters Values
Initial Sparsity 0.50
Final Sparsity 0.90
Begin Step 0

End Step 100

The initial sparsity defines the starting point of the
pruning process. It represents the percentage of weights
that are initially pruned (set to zero). The initial sparsity
of 0.50, means that 50% of the weights in the model
are initially pruned. The final sparsity represents the
target sparsity level to be achieved at the end of the
pruning process. It defines the percentage of weights
that will eventually be pruned. The final sparsity of 0.90,
indicating that the pruning process aims to prune 90%
of the weights in the model. The begin step determines
when the pruning process starts. It specifies the training
step or epoch at which the pruning begins. The begin
step of 0, indicating that pruning starts from the
beginning of the training process. The end step indicates
the training step or epoch at which the pruning process
ends. It defines the point in the training process when the
desired final sparsity should be reached. The end step is
set to 100, indicating that the pruning process should be
completed after 100 training steps or epochs.

4.2. Fine tuning the pruned model

We retrained the pruned model with the same
hyperparameters as the baseline model but reduced the
number of epochs to 10. We also updated the pruned
weights using tfmot.sparsity.keras.UpdatePruningStep.
Figure 6 shows the results obtained from evaluating the
pruned model.
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Figure 6: AUC of the pruned model
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After applying pruning techniques to reduce the
complexity of the model, we observed a slight decrease
in the AUC value from 1.0 to 0.99. However, it is
important to note that an AUC of 0.99 still indicates
excellent performance and a high level of discrimination
between positive and negative classes.
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Figure 7: Confusion matrix of pruned model

Table 4: Pruned Model Results Summary
Accuracy Precision Recall F1-score size

0.98 0.97 0.98 0.97 84KB

The results in Table 4 indicate that the pruned
model maintains a high level of performance even
after the pruning process, suggesting that unnecessary
or less significant weights were successfully removed
without significantly impacting the model’s predictive
capabilities. It demonstrates the effectiveness of the
pruning technique in reducing model complexity while
preserving performance. Pruning the model allowed us to
achieve a more efficient and streamlined model without
significantly sacrificing its accuracy. This demonstrates
the effectiveness of the pruning technique in optimizing
the model for resource-constrained environments, such
as IoMT nodes with limited processing power and
memory capacity. Therefore, the pruned model retains a
high level of performance and offers improved efficiency
for real-world deployment. These results highlight the
potential of our approach in developing lightweight and
efficient deep learning models for [oMT applications.

4.3. Results comparison

We present a detailed comparison of our model with
state-of-the-art models in the field. The comparison
aims to evaluate the performance and effectiveness of
our proposed model in addressing the research problem.
By comparing our model to existing approaches, we can
gain insights into its strengths, weaknesses, and potential

contributions to the field. The evaluation metrics used
for comparison include accuracy, precision, recall, F1-
score, and model size. Table 5 provides a comprehensive
overview of the performance metrics and model sizes
of our model and selected state-of-the-art models. This
analysis will serve as a foundation for discussing the
superiority and advancements of our approach.

Table 5: Comparison with the existing models

Author Method Accuracy  Size

(Hady et al., 2020) KNN 90% -

(Gupta et al., 2022)  Tree based  93% -
classifier

(Chaganti etal., 2022) PSO-DNN  96% IMB

Proposed model PCA-DNN  98% IMB

Pruned model PCA-DNN __ 97% 84KB

A comparative analysis between the proposed PCA-
DNN model and existing intrusion detection approaches
for IoMT environments clearly demonstrate that the
proposed model outperforms prior studies in terms of
detection accuracy while also addressing the critical
constraint of model size.

Compared with the KNN-based approach by Hady
et al. (2020), which achieved an accuracy of 90%, and
the tree-based classifier proposed by Gupta et al. (2022)
with 93% accuracy, the proposed PCA-DNN model
achieved a substantially higher accuracy of 98%. This
improvement highlights the advantage of deep learning
models when combined with effective feature reduction
techniques in capturing complex attack patterns within
[oMT traffic.

Furthermore, when compared to the PSO-
DNN model introduced by Chaganti et al. (2022),
which reported a 96% accuracy with a model size of
approximately 1 MB, the proposed model not only
improves detection accuracy but also maintains
comparable storage requirements prior to pruning. This
demonstrates that replacing feature optimization via
particle swarm optimization with Principal Component
Analysis can yield better generalization while reducing
feature redundancy.

A key contribution of this study is the pruning of
the PCA-DNN model, which reduced the model size
from 1 MB to 84 KB, while retaining a high accuracy
of 97%. This result is particularly significant for
resource-constrained IoMT devices, where memory
and computational power are limited. Although pruning
led to a slight reduction in accuracy (from 0.98 to
0.97), a paired t-test confirmed that the difference was
not statistically significant, indicating that pruning
effectively reduces computational and storage overhead
without meaningful performance degradation.
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The implications of these findings are substantial
for real-time healthcare systems. High recall values
imply a lower false-negative rate, which is crucial in
IoMT environments where undetected attacks may
compromise patient safety. Overall, the proposed
PCA-DNN and its pruned variant provide a superior
balance between accuracy, efficiency, and lightweight
deployment, outperforming existing [oMT intrusion
detection models and making them well-suited for real-
world healthcare applications.

5. Conclusion and recommendation

Thisstudy presentedalightweightdeep learningmodel for
intrusion detection in Internet of Medical Things (IoMT)
devices using Principal Component Analysis (PCA) for
dimensionality reduction and weight pruning for model
compression. The proposed PCA-DNN achieved 98%
accuracy with a model size of 84 KB, outperforming
prior state-of-the-art techniques. A major contribution
of this work is the introduction of a pruning algorithm
that makes the neural network sparse by setting the less
significant weights to zero. This approach effectively
reduces computational and memory requirements while
preserving high detection performance. The pruning
process significantly optimized the model’s complexity,
enabling deployment on resource-constrained [oMT
devices without substantial loss in accuracy. The results
confirm that the proposed method provides an efficient
and practical solution for securing [oMT systems. Future
work will focus on evaluating the model’s performance
on larger and more diverse datasets and investigating its
robustness against adversarial attacks to further enhance
reliability in real-world medical IoT environments.
Also, k-fold cross-validation and evaluation on external
datasets can be performed to validate the model’s
generalizability across different [oMT environments.
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