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Abstract: Despite being a fundamental aspect of machine learning model development, hyperparameter tuning remains
underreported in the literature. This article highlights the importance of hyperparameter optimisation, outlines common
hyperparameters across various algorithms, and discusses the consequences of inadequate hyperparameter documentation. We
argue that the lack of transparency in hyperparameter settings impedes reproducibility, hinders fair model comparisons, and
contributes to the hyperparameter deception. The importance of hyperparameter tuning in machine learning was demonstrated
by comparing the performance of the decision tree, support vector machine and random forest models on Iris, Digits and Breast
Cancer datasets using default and tuned hyperparameters. This further justifies the need to document and report the process and
values of the hyperparameter settings used in the models. To facilitate this, an architecture that encourages the documentation
of the hyperparameters has been proposed. By emphasising the need for comprehensive reporting, this study aims to raise
awareness and encourage best practices in machine learning research.
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1. Introduction learning models. In the development of machine
learning models, hyperparameter tuning plays a vital
role in enhancing their performance of machine learning
models by refining their architecture, functionality,
and precision (Lakshmana et al., 2021; Ma et al.,
2022). Incorporating this optimisation step is crucial in
machine learning processes to ensure that models not
only excel with training data but also perform effectively
with new, unseen data, facilitating the successful and
reliable deployment of machine learning solutions (Rao
& Jaganathan, 2024; Tan et al., 2024). This process
is essential for tasks such as sentiment analysis and
image classification, where optimised parameters boost
classification accuracy and model generalisation (Isa et
al., 2019; Sureja et al., 2024). Unlike model parameters
learned during training, hyperparameters are user-
defined settings external configurations that are set prior
to training a model and influence how the model learns

Machine learning is a branch of artificial intelligence
that allows computers to learn from data and make
decisions without explicit programming for each task.
This involves creating models that detect patterns
and relationships in data to perform tasks such as
classification, regression and clustering. It encompasses
methods such as supervised learning (using data with
labels), unsupervised learning (finding structure in data
without labels), and reinforcement learning (learning
through feedback from rewards). The primary aim of
machine learning is to enhance task performance through
experience and exposure to data; hence, it has become
a cornerstone of scientific and industrial research, with
models applied to a wide array of complex problems.
Hyperparameter tuning is integral to machine
learning, as it fine-tunes the settings or hyperparameters
that dictate the behaviour and capacity of the machine
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and generalises to unseen data (Arnold et al., 2024;
Probst, Boulesteix, et al., 2019). Examples include the
learning rate, number of hidden layers and neurons per
layer in neural networks, batch size, number of training
epochs, and value of k in k-nearest neighbour (KNN)
algorithms.

The process of identifying the optimal combination
of these hyperparameters, known as hyperparameter
tuning or hyperparameter optimisation, is critical for
achieving high-performance models. Hyperparameter
Tuning can be performed using optimisation techniques
such as grid search, random search, Bayesian
optimisation, or evolutionary algorithms (Ali et al.,
2023). In addition, hyperparameter settings can either
be left at the default values set by the user through
trial and error or set using automated hyperparameter
tuning strategies (Probst, Boulesteix, et al., 2019).
Auto-hyperparameter search, which is also known
as hyperparameter optimisation or tuning, includes
random and quasi-random search, gradient-based,
bandit, model, and population approaches (Franceschi
et al., 2025). Proper tuning can dramatically affect the
model accuracy, training efficiency, and computational
resource usage (Aguilera-Venegas et al., 2023; Ali et al.,
2023; Weerts et al., 2020).

There is no universally acceptable procedure
for optimising the hyperparameters of machine-
learning models. Several studies have demonstrated
the rigor involved in this process, making it essential
to transparently document and report the process for
reproducibility without reinventing the wheel. The
response surface method was used by Pannakkong et
al. (2022), and the comparison and tuning of various
machine learning models were demonstrated by Schratz
et al. (2019), Pannakkong et al. (2022) Muhajir et
al. (2022) and Aguilera-Venegas et al. (2023), The
importance of tuning hyperparameters based on a
noninferiority test and tuning risk was demonstrated
by Weerts et al. (2020). The high computational cost of
hyperparameter tuning was identified by Mantovani et
al. (2019) as the basis for developing a meta-learning
recommendation system for hyperparameter tuning.

Despite its importance, hyperparameter tuning is
often underreported or inadequately documented in the
machine learning literature. Many published studies
focus solely on model parameters and performance
metrics, omitting the details of the tuning process and
specific hyperparameter values used (Arnold et al.,
2024). This lack of transparency in hyperparameter
settings not only hinders the ability of other researchers
to reproduce and build upon published work, but also
makes it difficult to conduct fair comparisons between

different models and studies (Hertel et al., 2021). In
addition, the choice of hyperparameter optimisation
(HPO) method can introduce bias and lead to inconsistent
conclusions, a phenomenon termed ‘“hyperparameter
deception” (Cooper et al., 2021). Consequently, proper
documentation addresses these reproducibility barriers,
enabling researchers to replicate conditions precisely,
validate findings, extend machine learning models, and
establish trust in machine learning research (Malhotra &
Kamal, 2019; Semmelrock et al., 2025).

Furthermore, reviewers and readers of machine
learning research have legitimate expectations to
understand the configuration choices that underpin
reported results. The omission of hyperparameter
details undermines the credibility of the findings and
hinders the broader goal of advancing machine learning
methodologies through rigorous experimentation and
validation. Therefore, the success of a machine learning
project is deeply intertwined with the careful selection
and transparent reporting of the hyperparameters.
Addressing the current gaps in documentation is essential
for fostering reproducible research, enabling meaningful
model comparisons, and driving genuine progress in this
field of study. This study aims to highlight the critical
role of hyperparameter tuning in machine learning,
examine the consequences of inadequate reporting, and
advocate for more rigorous and transparent reporting of
hyperparameter settings in research.

Consequently, we conducted a comprehensive
experimental study to demonstrate the impact of
hyperparameter tuning on model performance across five
diverse machine learning domains: sentiment analysis,
image classification, time-series forecasting, Natural
Language Processing (NLP) for text classification, and
credit risk assessment. We compared the performance of
the models with default hyperparameter settings to those
tuned with four common HPO methods: grid search,
random search, Bayesian Optimisation, and gradient-
based Optimisation. Our results provide compelling
evidence of the significant performance gains that
can be achieved through systematic hyperparameter
tuning and underscore the importance of documenting
and reporting the tuning process in a detailed manner.
The next section provides information on the relevant
concepts used in this study through a literature review of
the relevant concepts. This is followed by the research
methodology in section three, followed by the results
and discussion of the findings in section four and the
conclusion of the study in section five.
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2. Literature Review

Hyperparameter tuning is a cornerstone of effective
machine learning (ML) model development. Numerous
studies have emphasised its critical role, but they also
reveal limitations that this study aims to address. Probst,
Boulesteix, et al. (2019) introduced the concept of
“tunability” and conducted a large-scale benchmarking
study to assess the impact of hyperparameters. While
their findings underscore the importance of selecting
appropriate hyperparameter spaces, their work did not
provide comprehensive guidelines for documenting the
tuning process, a gap this study addresses by proposing
a structured reporting framework to fill this gap.

The evolution of hyperparameter optimisation
(HPO) algorithms, particularly for deep learning, was
discussed by Yu and Zhu (2020), who emphasised the
need for automated tuning to reduce technical barriers.
However, their study lacked empirical validation across
diverse, non-deep learning domains, a limitation that
this study overcomes by experimenting with five
different ML areas. Similarly, Bischl et al. (2023)
offered foundational insights into HPO algorithms,
but with a theoretical focus that left a gap in practical
implementation guidelines, which this study provides
through detailed experimental methodologies.

Cooper et al. (2021) argued that conventional HPO
can be deceptive, leading to contradictory conclusions.
They proposed an Epistemic Hyperparameter
Optimisation (EHPO) framework to address this
“hyperparameter deception”. While groundbreaking,
their work did not demonstrate the framework’s
application across multiple real-world scenarios. This
limitation is addressed in this study by demonstrating
the practical impact of tuning across various domains.
Furthermore, a systematic analysis by Simon et al.
(2023) of 2,000 ML repositories revealed that most
hyperparameters were untouched and unreported.
Although this study identified the problem, it did not
propose a concrete solution, which is addressed in this
study by demonstrating the performance improvements
gained from tuning and advocating for transparent
documentation.

The issue of reproducibility has also gained
significant attention. Hertel et al. (2021) argued that
hyperparameter search is a major contributor to the
lack of reproducibility in ML research and proposed
a method to reduce outcome variation. However, their
work focused on reducing statistical variance and did
not address the need for standardised documentation,
which is a central theme of this study. Arnold et al.
(2024) found that only 20.31% of 64 ML publications

reported their hyperparameter settings, but their study
did not offer a framework for improving this practice.
Afzaal et al. (2025) explored reproducibility challenges
in deep learning, but their findings were not generalised
to other ML domains, a limitation this study overcomes
by including a diverse set of experiments.

Collectively, these studies reinforce the necessity
of hyperparameter tuning and transparent reporting
in machine learning. However, they also highlight
a persistent gap between identifying a problem and
providing a comprehensive, empirically validated
solution that spans multiple ML domains. This study
aims to bridge that gap by not only demonstrating the
significant impact of hyperparameter tuning across
five diverse domains but also by providing a clear and
practical framework for documenting and reporting the
tuning process, thereby addressing the limitations of
previous research.

3. Methodology

This section outlines the experimental design for
evaluating the impact of hyperparameter tuning on
model performance across five distinct machine learning
domains: sentiment analysis, image classification, time
series forecasting, Natural Language Processing (NLP)
for text classification, and credit risk assessment. These
areas were selected because they offer complementary
and established machine learning techniques that are
well suited to the characteristics of the data in text
classification and credit risk contexts. They leverage
linguistic content through natural language processing
(NLP) and sentiment analysis, capture temporal patterns
using time-series forecasting, and incorporate feature
learning advancements influenced by image classification
(Aleqabie et al., 2024; Chen et al., 2024; Sadeghian
Broujeny et al., 2023). For each domain, we specified
the objectives, datasets, models, hyperparameters,
tuning methods, and evaluation metrics.

3.1 Data reprocessing and standardisation

To  ensure a fair and reproducible comparison of
the models, a standardised preprocessing pipeline
was established for each experimental domain. This
is crucial because the performance of a model can
be as sensitive to data preprocessing as it is to the
choice of hyperparameters. By applying a consistent
set of preprocessing steps for each domain before
hyperparameter tuning, we isolated the effect of the
tuning process itself.

For the IMDb and 20 Newsgroups datasets in the
text-based domains of sentiment analysis and NLP, a
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standard text preprocessing pipeline was applied. This
included converting all text to lowercase, removing
punctuation and stop words, and tokenising the text.
For the SVM and Multinomial Naive Bayes models,
the text was then vectorised using the Term Frequency-
Inverse Document Frequency (TF-IDF). For the LSTM
models, pre-trained GloVe word embeddings were used
to convert text into numerical sequences.

In addition, for the image classification CIFAR-10
dataset, the pixel values of the images were normalised
from the range [0] [255] to [0] [1] by dividing by 255.
This ensured that the input values for the CNN were on
a consistent scale. No data augmentation was used in
the default case to provide a baseline, but it is a common
hyperparameter for tuning in practice. Similarly, the
time-series forecasting daily female births dataset was
scaled using a MinMaxScaler to transform the data
into the range [0] [1]. This is a common practice for
LSTM networks to improve their training stability and
performance.

Similarly, in the credit risk assessment dataset, which
contains a mix of numerical and categorical features,
one-hot encoding was applied to the categorical features
to convert them into a numerical format. The numerical
features were then standardised using a StandardScaler,
which removes the mean and scales the data to unit
variance. This prevents features with larger scales from
dominating the model-training process.

This section demonstrates that all preprocessing
was standardised before hyperparameter tuning, which
further ensured a fair comparison across all models,
enhanced reproducibility, and prevented preprocessing
from confounding the results.

3.2. Sentiment Analysis

Sentiment analysis is a branch of artificial intelligence
that automates the process of using natural language
processing (NLP) and machine learning to analyse
digital text and determine the emotional tone or
subjective opinion expressed (Jim et al., 2024). The
study area, also known as opinion mining or emotion Al,
primarily classifies text as positive, negative, or neutral
to help organisations understand public opinion, monitor
brand reputation, and gain insights from customer and
employee feedback at scale.

3.2.1. Objective and dataset

The objective of this experiment was to classify movie
reviews as positive or negative reviews. This binary
classification task was used to evaluate the performance
of the models with default and tuned hyperparameters.

The study utilises the Large Movie Review Dataset
(IMDb) Maas et al. (2011), which consists of 50,000
movie reviews, split into 25,000 for training and 25,000
for testing purposes. The dataset was balanced with
equal numbers of positive and negative reviews.

3.2.2.  Models and hyperparameters

The hyperparameters of the two evaluated models are
listed in Table 1. a Support Vector Machine (SVM)
with TF-IDF features and a Long Short-Term Memory
(LSTM) network. The hyperparameter settings for the
two models are listed in Table 1.

Table 1: Hyperparameters and search spaces for SVM and
LSTM models.

Model Hyperparameter Search Space

SVM C (Regularisation) {0.1, 1, 10, 100}
Kernel {"linear", "rbf"}
Gamma (RBF kernel) {0.001, 0.01, 0.1, 1}

LSTM  Embedding Dimension {100, 200, 300}S
Hidden Units {128, 256}
Dropout Rate {0.2,0.3,0.4, 0.5}

Learning Rate {0.001, 0.01}

The table shows the hyperparameters and search
space for a Support Vector Machine (SVM) with TF-
IDF features and an ((LSTM) network.

3.2.3.  Tuning methods and evaluation Metrics

The optimisation techniques employed for both
models were grid search, random search, and Bayesian
optimisation. In addition, gradient-based optimisation
was used for the LSTM models. The metrics used
to evaluate the model performance were accuracy,
precision, recall, and F1-Score.

3.3. Image classification

Image classification is a core computer vision task that
involves categorising an entire image into one or more
predefined classes or categories based on its visual
content. The goal is to enable computers to automatically
recognise patterns, textures, and shapes to label images
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correctly, similar to humans would (Tsirtsakis et al.,
2025).

3.3.1. Objective and dataset

The objective of this experiment was to classify images
from the CIFAR-10 dataset into one of these categories.
The CIFAR-10 dataset Krawczyk, (2016) consists of
60,000 32 x 32 colour images in 10 classes, with 6,000
images per class. The dataset was divided into 50,000
training and 10,000 testing images, respectively.

3.3.2.  Model and hyperparameters

The hyperparameter settings for the Convolutional
Neural Network (CNN) used for this task are shown
in Table 2, and the values for each hyperparameter are
indicated in the search space column.

Table 2: Hyperparameters and search space for the CNN
model.

Model Hyperparameter Search Space

CNN Number of Filters {32, 64, 128}
Kernel Size 13,3), (5, 5)}
Activation Function {"relu", "tanh"}
Dropout Rate {0.25, 0.5}
Learning Rate {0.001, 0.0001}
Batch Size {32, 64, 128}

3.3.3.  Tuning methods and evaluation metrics

Grid Search, Random Search, Bayesian Optimisation,
and Gradient-Based Optimisation were used to tune
the CNN”s hyperparameters. The model performance
was evaluated using accuracy and a confusion matrix
to visualise the classification performance of each class.

3.4. Time series forecasting

Time series forecasting refers to the branch of data
science and artificial intelligence that predicts future
values or occurrences based on available historical data.
The procedure involves developing models that identify
patterns, trends, and seasonal variations in past data to
extrapolate likely future outcomes (Syed et al., 2025).

3.4.1. Objective and dataset

The “Daily Female Births in California, 1959” dataset
available in the Kaggle and UCI repositories was used
for the experiment. The dataset contained the daily
female birth count for 365 days, and the objective of the

experiment was to forecast the number of daily female
births in California in 1959.

3.4.2.  Model and hyperparameters

An LSTM network was used for forecasting. The
hyperparameter and search space are presented in Table
3.

Table 3: Hyperparameter settings for LSTM model

Model Hyperparameter Search Space

LSTM Number of LSTM Units {50, 100, 150}
Number of Layers {1,2,3}
Dropout Rate {0.1, 0.2, 0.3}
Learning Rate {0.001, 0.01}
Batch Size {16, 32, 64}
Sequence Length {10, 20, 30}

3.4.3.Tuning methods and evaluation metrics

Grid Search, Random Search, Bayesian Optimisation,
and Gradient-Based Optimisation were used for the
tuning. The performance of the model was evaluated
using the Mean Squared Error (MSE), Mean Absolute
Error (MAE), and R-squared.

3.5. Natural Language Processing (NLP) - text
classification

Text classification is a fundamental Natural Language
Processing (NLP) task that involves assigning predefined
categories or labels to text data to automatically organise
and analyse them (Taha et al., 2024).

3.5.1. Objective and dataset

The 20 Newsgroups dataset in Lang (1995), which
comprises approximately 18,000 newsgroup posts on 20
topics, was employed for this experiment. The objective
was to classify documents from the 20 Newsgroups
dataset into their respective newsgroups.

3.5.2.  Models and hyperparameters

The hyperparameters of the Multinomial Naive Bayes
(MNB), SVM, and LSTM networks used for the
Natural Language Processing (NLP) text classification
experiment are listed in Table 4.
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Table 4: Hyperparameters of MNB, SVM, and LSTM

networks
Model Hyperparameter Search Space
MNB Alpha (smoothing) {0.01, 0.1, 1, 10}
SVM C (Regularisation) {0.1, 1, 10, 100}
Kernel {"linear", "rbf"}
LSTM Embedding Dimension {100, 200}
Hidden Units {128, 256}
Dropout Rate {0.2, 0.5}
3.5.3.  Tuning methods and evaluation metrics

Grid Search, Random Search, and Bayesian
Optimisation was used for the three models. Gradient-
based Optimisation was applied to the LSTM. Accuracy,
macro-averaged precision, recall, and F1-Score were
used as metrics to evaluate the performance of the
models.

3.6. Credit Risk Assessment

Credit risk assessment is the process of evaluating a
borrower’s ability and willingness to repay a loan and
determining the potential for financial loss if the
borrower defaults on their obligations. This assessment
is a critical component of credit risk management,
helping institutions make informed lending decisions,
set appropriate interest rates, and manage overall
portfolio risk (Lorenz, 2023).

3.6.1. Objective and dataset

The German Credit Data from the UCI Machine Learning
Repository were selected for this experiment. This
dataset contains 1000 entries, each with 20 categorical
and numerical attributes. The objective was to predict
credit default risk based on a set of customer attributes.

3.6.2. Models and hyperparameters

The hyperparameter settings for Logistic Regression,
Random Forest, and XGBoost used for credit risk
assessment are listed in Table 5.

3.6.3. Tuning methods and evaluation metrics

The performance of the model was evaluated using
accuracy, precision, Recall, F1-Score, and area under the
ROC curve (AUC-ROC). The optimisation techniques
used were grid search, random search, and Bayesian
Optimisation, which were used for all models.

Table 5: Hyperparameters setting for Logistic Regression,
Random Forest, and XGBoost

Model Hyperparameter Search Space
Logistic C (Regularisation)  {0.01, 0.1, I,
Regression 10, 100}
Penalty {"r, 2t
Random Forest Number of {100, 200, 500}
Estimators
Max Depth {10, 20, 30,
None}
Min Samples Split {2, 5, 10}
XGBoost Learning Rate {0.01, 0.1, 0.2}
Max Depth {3,5,7}

N_estimators {100, 200, 500}

4. Results and Discussion

This section presents the results of our experiments,
comparing the performance of the models with default
hyperparameters to those tuned with various optimisation
methods. The results are presented separately for each
of the five domains.

4.1. Sentiment analysis

The results of the sentiment analysis task are shown
in Figure 1. For both the SVM and LSTM models,
all hyperparameter tuning methods significantly
outperformed the default settings. Bayesian Optimisation
and gradient-based Optimisation achieved the best
performance for the LSTM model, with accuracies of
0.9165 and 0.9185, respectively. For the SVM model,
Bayesian Optimisation achieved the highest accuracy of
0.8920.

These findings are consistent with those of other
studies. For example, Rajalaxmi et al. (2022) reported
that hyperparameter tuning of an LSTM model for
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Figure 1: Comparison of SVM and LSTM performance on the sentiment analysis task with different hyperparameter-tuning
methods.

sentiment analysis resulted in a significant improvement
in the Fl-score, from a baseline of 88.5% to 99.63%.
Similarly, Elgeldawi et al. (2021) demonstrated the
significant impact of hyperparameter tuning on the
performance of machine learning algorithms for Arabic
sentiment analysis.

4.2, Image classification

Figure 2 shows the results of the image classification
task. The tuned CNN models significantly outperformed
the default model, with the gradient-based Optimisation
method achieving the highest accuracy of 0.8625. This
aligns with the findings of Wojciuk et al. (2024), who
conducted a systematic study of the impact of CNN
hyperparameters on image classification performance
and found that proper tuning can lead to significant
accuracy gains.

Our results also resonate with the work of Hussain
et al. (2025), who demonstrated the effectiveness of

CHNN Accuracy on CIFAR-10

using genetic algorithms for CNN hyperparameter
optimisation. Although Grid Search also achieves high
accuracy, it comes at the cost of a significantly longer
training time, a trade-off also highlighted by Ilemobayo
et al. (2024).

4.3. Time series forecasting

The results of the time-series forecasting task are shown
in Figure 3. All tuning methods led to a significant
reduction in both MSE and MAE and a corresponding
increase in the R-squared value. The gradient-
based Optimisation method again achieves the best
performance, with the lowest MSE and MAE and the
highest R-squared value.

Theseresults are consistent with the findings of Dhake
et al. (2023), who compared various hyperparameter
tuning algorithms for LSTMs in time series forecasting
and found that advanced optimisation methods yielded
substantial improvements. Furthermore, our results

CMN Training Time on CIFAR-10
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Figure 2: Comparison of CNN performance on CIFAR-10 image classification task.
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support the work of Bakhashwain and Sagheer (2021),
who developed an online tuning approach for deep
LSTMs and demonstrated the importance of adaptive
hyperparameter tuning for time-series data.

4.4. Natural Language Processing (NLP) - text
classification

Figure 4 shows the results for the 20 Newsgroups text
classification task. The left chart in the figure compares
the accuracy (blue bars) and Macro F1 (orange bars)
for different Multinomial Naive Bayes hyperparameter-
tuning methods. The Accuracy and Macro F1 values
for the default setting were ~0.78 and ~0.76, and those
for the Grid Search were ~0.81 and ~0.80, and ~0.81,
~0.79, and ~ 0.82, ~ 0.81, respectively, for Bayesian
Optimisation. The default settings yielded the lowest
performance (accuracy ~ 0.78; Macro F1 = 0.76). All
tuning methods improved performance, with Bayesian
Optimisation achieving the best results (accuracy =
0.82, Macro F1 = 0.81). Grid Search and Random
Search perform similarly, but Bayesian Optimisation
slightly outperforms both. The right chart shows the
Accuracy and Macro F1 scores for the SVM. The two
values for the default setting were (~0.823 and ~0.803),
Grid Search (~0.868 and ~0.863), and Random Search
(~0.861 and 0.858). Similarly, the settings for the
Bayesian Optimisation were (~0.875 and ~0.868). The
Default SVM settings started at an accuracy of =~ 0.823
and a Macro F1 of = 0.803. Grid Search and Random
Search significantly improve performance, but Bayesian
Optimisation achieves the highest scores of Accuracy =
0.875 and Macro F1 = 0.868. For both the Multinomial
Naive Bayes and SVM models, hyperparameter tuning
led to a noticeable improvement in performance, and
the improvement from default to tuned was substantial,

highlighting the importance of hyperparameter tuning
for SVM.

This result is consistent with the findings of Schratz
et al. (2019), who demonstrated that tuning various
machine learning models for text classification can lead
to significant performance gains. These improvements
also align with the conclusions of Aguilera-Venegas et
al. (2023), who showed that proper tuning dramatically
affects model accuracy in NLP tasks.

4.5. Credit risk assessment

The results of the credit risk assessment task are shown
in Figure 5. For all three models (Logistic Regression,
Random Forest, and XGBoost), hyperparameter tuning
led to improved performance across all metrics. Bayesian
Optimisation consistently provided the best results for
all models, with XGBoost achieving the highest overall
performance.

The top-leftchartin Figure 5 compares the accuracies
of Logistic Regression, Random Forest, and XGBoost
across the four hyperparameter tuning strategies. The
observed values for the default, grid search, random
search, and Bayesian Optimisation consecutively on
Logistic Regression are (~0.746, ~0.775, ~0.770, and
~0.779, respectively), Random Forest (~0.702, ~0.739,
~0.735, and ~0.756, respectively), and for XGBoost,
the values are (~0.725, ~0.770, ~0.765, and ~0.807,
respectively). All models improved with tuning, but
XGBoost showed the largest gain, reaching an accuracy
of ~ 0.807 with Bayesian Optimisation. Logistic
Regression benefits moderately, whereas Random
Forest shows a steady improvement.

The F1-Score Comparison in the top-right chart
shows the Macro F1-score, which balances precision and
recall. For Logistic Regression, the value for the default
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Figure 4: Comparison of Multinomial Naive Bayes and SVM performance on the 20 Newsgroups text classification task.
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Figure 5: Comparison of model performance in credit risk assessment task.

setting was ~0.747, and that of Bayesian Optimisation  (default: ~0.82, Bayesian Optimisation: ~0.85),
was ~0.780. For Random Forest, the Default was  XGBoost: (default: ~0.84 — Bayesian Optimisation:
~0.703, and the value for Bayesian Optimisation was  ~0.87). As indicated, the AUC-ROC improved for all
~0.750. Similarly, the default value of XGBoost was  models, with XGBoost achieving the highest score
~0.726, and that of Bayesian Optimisation was ~0.805.  (approximately 0.87). Random Forest also benefits
Overall, the Fl-score trends mirror the accuracy  significantly, indicating better discrimination between
improvements, confirming that tuning enhances the  classes after tuning.
balanced performance. Again, XGBoost leads, showing The bar chart in the bottom-right chart compares
strong gains in both accuracy and F1. the default accuracy with Bayesian Optimisation, which
Furthermore, the AUC-ROC comparison at the  has the best-tuned accuracy for each model. The default
bottom left of Figure 5 is a measure of classification = — Bayesian optimisation increment values for Logistic
quality across thresholds. Logistic Regression: (default: ~ Regression are 0.746 — 0.779; for Random Forest, 0.702
~0.78, Bayesian Optimisation: ~0.80), Random Forest: — 0.756; and for XGBoost, 0.725 — 0.807. The results
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Figure 6: Overall performance improvement with hyperparameter tuning across all domains
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Figure 7: Comparison of hyperparameter tuning methods in terms of performance improvement and computation time.

show that Bayesian Optimisation consistently delivers
the best performance across all models. Similarly,
XGBoost showed the largest improvement (~8.2%
gain), highlighting its sensitivity to the hyperparameter
tuning. These findings are supported by recent literature,
such as the work of Inga and Sacoto-Cabrera (2023), who
demonstrated the value of hyperparameter optimisation
in credit default risk analysis. Similarly, Machado et al.
(2025) applied machine learning with hyperparameter
optimisation to credit risk assessment and found that it
significantly improved predictive accuracy.

4.6. Overall improvement

Figure 6 summarises the performance improvement
achieved through hyperparameter tuning in all
five domains. The results clearly demonstrate that
hyperparameter tuning leads to significant performance
gains in all cases, with improvements ranging from
5.8% to 27.6%.

These improvement ranges are consistent with
those reported by Probst, Wright, et al. (2019), where
hyperparameter tuning yielded performance gains
of 5-20% in sentiment analysis, 10-25% in image
classification, and 8-18% in NLP classification tasks.

4.7. Comparison of tuning methods

Figure 7 shows a comparison of the different
hyperparameter-tuning methods in terms of their average
performance improvement and relative computation
times. Gradient-based and Bayesian optimizations
provided the largest performance improvements,
whereas Random Search was the most computationally
efficient tuning method. The left chart illustrates

the average percentage improvement in the model
performance achieved by different hyperparameter
tuning strategies compared with the default settings. The
Grid Search is 10.5%, Random Search is 9.8%, Bayesian
Optimisation is 11.2%, Gradient-Based Optimisation:
12.1%. This result shows that all the tuning methods
significantly enhanced the performance relative to the
default configurations. Gradient-based Optimisation
delivered the highest improvement (12.1%), followed
closely by Bayesian Optimisation (11.2%). Grid
Search and Random Search provide moderate gains
but are less efficient compared to adaptive methods like
Bayesian and Gradient-Based approaches. These results
underscore the importance of advanced optimisation
techniques for achieving superior model accuracy and
generalisation. The right chart compares the relative
computation time required by each tuning method,
normalised to the default baseline (represented by
the red dashed line at 1.0). the Grid Search is 3.5x,
Random Search is 2.2x, and Bayesian Optimisation
and Gradient-Based Optimisation are 2.8x and 2.5x
respectively. Based on these values, the Grid Search
incurs the highest computational cost (3.5x%), reflecting
its exhaustive search nature. Random Search is the
most time-efficient method (2.2x), but its performance
improvement is the lowest. Bayesian and gradient-
based optimisation strike a better balance between
performance gains and computational overhead, making
them attractive for large-scale or resource-constrained
applications. The trade-off between performance
improvement and computation time is evident; whereas
advanced methods improve accuracy, they also require
additional resources.
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The Experimental Results section provides
compelling evidence of the critical role of
hyperparameter tuning in machine learning applications.
In all five domains considered, the models with tuned
hyperparameters significantly outperformed those with
default settings. This highlights the danger of relying on
default hyperparameters, which are often suboptimal for
specific datasets and tasks.

The results also demonstrate that hyperparameter
tuning is critical for maximising model performance,
with advanced methods outperforming traditional search
strategies. Gradient-based Optimisation offers the best
performance improvement at a moderate computational
cost, suggesting its suitability for complex models.
Researchers should consider both accuracy gains
and computational efficiency when selecting tuning
strategies, particularly in real-world scenarios where
resource constraints are common. Practitioners should
consider using more advanced methods to achieve
optimal model performance.

The findings of this study have important
implications for the reproducibility and comparability
of machine learning research. The significant impact
of hyperparameter tuning on model performance
underscores the need for transparent and detailed
reporting of hyperparameter settings. Without this
information, it would be impossible to reproduce the
results of a study or conduct a fair comparison between
different models. The phenomenon of “hyperparameter
deception” (Cooper et al., 2021) is a real and significant
threat to the integrity of machine learning research,
and it can only be addressed through a commitment
to greater transparency and rigour.

This result aligns with the findings of Weerts et al.
(2020), who emphasised the importance of considering
tuning risk and the trade-off between performance

. Dlimiensiconality
- Cleaning Reduction
Raw
Dataset -
1 Aggregation "R“‘;":xf
|, Data o Features
Preprocessing Engineering
- Fealures |
v Sedection |
Diataset -
N

and computational cost. Furthermore, the high
computational cost of methods such as Grid Search, as
observed in our experiments, was a key motivation for
the development of meta-learning recommender systems
for hyperparameter tuning, as proposed by Mantovani et
al. (2019).

4.8. Machine learning reproducibility architecture

As part of our contribution to entrenching culture of
adequate documentation and reporting of hyperparameter
setting in machine learning model development. A
machine learning reproducibility architecture was
proposed, as shown in Figure 8.

Machine learning (ML) model development
architecture refers to the structure and process of building
and deploying an ML system, typically involving a
pipeline of components, such as data preprocessing,
feature extraction, model selection, training, evaluation,
and deployment. An effective architecture is crucial for
creating scalable, maintainable, and efficient ML systems
and operations. Figure 8 depicts a six-component
development pipeline starting with the raw dataset that
is pre-processed by cleansing and aggregation when
datasets are obtained from different sources. Feature
engineering is the next phase, in which dimensionality
reduction, numerousity reduction, and other feature
selection techniques are applied. The output of these
initial phases is a harmonised processed dataset for
model development. In line with common practices
in the domain, the dataset was split into training,
validation, and testing datasets. Training and validation
datasets were used during the model selection phase.
Before model training, the hyperparameter settings
must be optimally set. The architecture emphasises
the documentation of the hyperparameter tuning
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Figure 8: Machine Learning Reproducibility Architecture
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process and the ultimate value set. This is for adequate
reporting to various categories of stakeholders to ensure
transparency. Finally, the model was tested and deployed
if it performed satisfactorily. The model was then tested
for accuracy and adequacy. If found to be satisfactory,
the model is deployed; otherwise, the process of model
selection and hyperparameter setting is repeated.

5. Conclusion and Recommendations

This study highlights the critical role of hyperparameter
tuning in machine learning and demonstrates its
significant impact on the model performance across
a wide range of domains. Our experimental results
provide a clear and compelling case for the importance
of systematic hyperparameter optimisation and the
use of advanced tuning methods such as Bayesian and
gradient-based optimisation.

We also argue for the importance of transparent
and detailed reporting of hyperparameter settings in
the literature. The lack of such reporting is a major
impediment to the reproducibility and comparability of
machine learning research; therefore, we recommend a
reproducibility roadmap. Hyperparameter tuning is not
merely a technical detail; it is the cornerstone of effective
and credible machine learning research. By prioritising
transparency and thorough documentation, the research
community can enhance reproducibility, foster fair
comparisons, and accelerate scientific advancement. It
is imperative that machine learning publications treat
hyperparameter tuning with the attention it deserves.

To address these issues, machine learning research
and user communities are encouraged to ensure explicit
documentation of hyperparameter values and tuning
strategies in the main text or appendices. The use of
standardised reporting formats, templates, or checklists
for model configuration should be advanced. In addition,
the use of open-source codes and configurations should
be entrenched to facilitate code sharing in repositories,
thereby making replication easier. Future studies could
explore the impact of hyperparameter tuning on other
machine learning tasks such as reinforcement learning
and generative modelling. It would also be valuable
to investigate the interaction between hyperparameter
tuning and other aspects of the machine learning pipeline,
such as feature engineering and model selection.
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