
1. Introduction

Machine learning is a branch of artificial intelligence 
that allows computers to learn from data and make 
decisions without explicit programming for each task. 
This involves creating models that detect patterns 
and relationships in data to perform tasks such as 
classification, regression and clustering. It encompasses 
methods such as supervised learning (using data with 
labels), unsupervised learning (finding structure in data 
without labels), and reinforcement learning (learning 
through feedback from rewards). The primary aim of 
machine learning is to enhance task performance through 
experience and exposure to data; hence, it has become 
a cornerstone of scientific and industrial research, with 
models applied to a wide array of complex problems. 

Hyperparameter tuning is integral to machine 
learning, as it fine-tunes the settings or hyperparameters 
that dictate the behaviour and capacity of the machine 

learning models. In the development of machine 
learning models, hyperparameter tuning plays a vital 
role in enhancing their performance of machine learning 
models by refining their architecture, functionality, 
and precision (Lakshmana et al., 2021; Ma et al., 
2022). Incorporating this optimisation step is crucial in 
machine learning processes to ensure that models not 
only excel with training data but also perform effectively 
with new, unseen data, facilitating the successful and 
reliable deployment of machine learning solutions (Rao 
& Jaganathan, 2024; Tan et al., 2024). This process 
is essential for tasks such as sentiment analysis and 
image classification, where optimised parameters boost 
classification accuracy and model generalisation (Isa et 
al., 2019; Sureja et al., 2024). Unlike model parameters 
learned during training, hyperparameters are user-
defined settings external configurations that are set prior 
to training a model and influence how the model learns 
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and generalises to unseen data (Arnold et al., 2024; 
Probst, Boulesteix, et al., 2019). Examples include the 
learning rate, number of hidden layers and neurons per 
layer in neural networks, batch size, number of training 
epochs, and value of k in k-nearest neighbour (KNN) 
algorithms.

The process of identifying the optimal combination 
of these hyperparameters, known as hyperparameter 
tuning or hyperparameter optimisation, is critical for 
achieving high-performance models. Hyperparameter 
Tuning can be performed using optimisation techniques 
such as grid search, random search, Bayesian 
optimisation, or evolutionary algorithms (Ali et al., 
2023). In addition, hyperparameter settings can either 
be left at the default values set by the user through 
trial and error or set using automated hyperparameter 
tuning strategies (Probst, Boulesteix, et al., 2019). 
Auto-hyperparameter search, which is also known 
as hyperparameter optimisation or tuning, includes 
random and quasi-random search, gradient-based,  
bandit, model, and  population approaches (Franceschi 
et al., 2025). Proper tuning can dramatically affect the 
model accuracy, training efficiency, and computational 
resource usage (Aguilera-Venegas et al., 2023; Ali et al., 
2023; Weerts et al., 2020).

There is no universally acceptable procedure 
for optimising the hyperparameters of machine-
learning models. Several studies have demonstrated 
the rigor involved in this process, making it essential 
to transparently document and report the process for 
reproducibility without reinventing the wheel.  The 
response surface method was used by Pannakkong et 
al. (2022), and the comparison and tuning of various 
machine learning models were demonstrated by Schratz 
et al. (2019), Pannakkong et al. (2022) Muhajir et 
al. (2022) and Aguilera-Venegas et al. (2023), The 
importance of tuning hyperparameters based on a 
noninferiority test and tuning risk was demonstrated 
by Weerts et al. (2020). The high computational cost of 
hyperparameter tuning was identified by Mantovani et 
al. (2019) as the basis for developing a meta-learning 
recommendation system for hyperparameter tuning.

Despite its importance, hyperparameter tuning is 
often underreported or inadequately documented in the 
machine learning literature. Many published studies 
focus solely on model parameters and performance 
metrics, omitting the details of the tuning process and 
specific hyperparameter values used (Arnold et al., 
2024). This lack of transparency in hyperparameter 
settings not only hinders the ability of other researchers 
to reproduce and build upon published work, but also 
makes it difficult to conduct fair comparisons between 

different models and studies (Hertel et al., 2021). In 
addition, the choice of hyperparameter optimisation 
(HPO) method can introduce bias and lead to inconsistent 
conclusions, a phenomenon termed “hyperparameter 
deception” (Cooper et al., 2021). Consequently, proper 
documentation addresses these reproducibility barriers, 
enabling researchers to replicate conditions precisely, 
validate findings, extend machine learning models, and 
establish trust in machine learning research (Malhotra & 
Kamal, 2019; Semmelrock et al., 2025). 

Furthermore, reviewers and readers of machine 
learning research have legitimate expectations to 
understand the configuration choices that underpin 
reported results. The omission of hyperparameter 
details undermines the credibility of the findings and 
hinders the broader goal of advancing machine learning 
methodologies through rigorous experimentation and 
validation. Therefore, the success of a machine learning 
project is deeply intertwined with the careful selection 
and transparent reporting of the hyperparameters. 
Addressing the current gaps in documentation is essential 
for fostering reproducible research, enabling meaningful 
model comparisons, and driving genuine progress in this 
field of study. This study aims to highlight the critical 
role of hyperparameter tuning in machine learning, 
examine the consequences of inadequate reporting, and 
advocate for more rigorous and transparent reporting of 
hyperparameter settings in research. 

Consequently, we conducted a comprehensive 
experimental study to demonstrate the impact of 
hyperparameter tuning on model performance across five 
diverse machine learning domains: sentiment analysis, 
image classification, time-series forecasting, Natural 
Language Processing (NLP) for text classification, and 
credit risk assessment. We compared the performance of 
the models with default hyperparameter settings to those 
tuned with four common HPO methods: grid search, 
random search, Bayesian Optimisation, and gradient-
based Optimisation. Our results provide compelling 
evidence of the significant performance gains that 
can be achieved through systematic hyperparameter 
tuning and underscore the importance of documenting 
and reporting the tuning process in a detailed manner. 
The next section provides information on the relevant 
concepts used in this study through a literature review of 
the relevant concepts. This is followed by the research 
methodology in section three, followed by the results 
and discussion of the findings in section four and the 
conclusion of the study in section five. 
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2. Literature Review

Hyperparameter tuning is a cornerstone of effective 
machine learning (ML) model development. Numerous 
studies have emphasised its critical role, but they also 
reveal limitations that this study aims to address. Probst, 
Boulesteix, et al. (2019) introduced the concept of 
“tunability” and conducted a large-scale benchmarking 
study to assess the impact of hyperparameters. While 
their findings underscore the importance of selecting 
appropriate hyperparameter spaces, their work did not 
provide comprehensive guidelines for documenting the 
tuning process, a gap this study addresses by proposing 
a structured reporting framework to fill this gap. 

The evolution of hyperparameter optimisation 
(HPO) algorithms, particularly for deep learning, was 
discussed by  Yu and Zhu (2020), who emphasised the 
need for automated tuning to reduce technical barriers. 
However, their study lacked empirical validation across 
diverse, non-deep learning domains, a limitation that 
this study overcomes by experimenting with five 
different ML areas. Similarly, Bischl et al. (2023) 
offered foundational insights into HPO algorithms, 
but with a theoretical focus that left a gap in practical 
implementation guidelines, which this study provides 
through detailed experimental methodologies.

Cooper et al. (2021) argued that conventional HPO 
can be deceptive, leading to contradictory conclusions. 
They proposed an Epistemic Hyperparameter 
Optimisation (EHPO) framework to address this 
“hyperparameter deception”. While groundbreaking, 
their work did not demonstrate the framework’s 
application across multiple real-world scenarios. This 
limitation is addressed in this study by demonstrating 
the practical impact of tuning across various domains. 
Furthermore, a systematic analysis by Simon et al. 
(2023) of 2,000 ML repositories revealed that most 
hyperparameters were untouched and unreported. 
Although this study identified the problem, it did not 
propose a concrete solution, which is addressed in this 
study by demonstrating the performance improvements 
gained from tuning and advocating for transparent 
documentation.

The issue of reproducibility has also gained 
significant attention. Hertel et al. (2021) argued that 
hyperparameter search is a major contributor to the 
lack of reproducibility in ML research and proposed 
a method to reduce outcome variation. However, their 
work focused on reducing statistical variance and did 
not address the need for standardised documentation, 
which is a central theme of this study. Arnold et al. 
(2024) found that only 20.31% of 64 ML publications 

reported their hyperparameter settings, but their study 
did not offer a framework for improving this practice. 
Afzaal et al. (2025) explored reproducibility challenges 
in deep learning, but their findings were not generalised 
to other ML domains, a limitation this study overcomes 
by including a diverse set of experiments.

Collectively, these studies reinforce the necessity 
of hyperparameter tuning and transparent reporting 
in machine learning. However, they also highlight 
a persistent gap between identifying a problem and 
providing a comprehensive, empirically validated 
solution that spans multiple ML domains. This study 
aims to bridge that gap by not only demonstrating the 
significant impact of hyperparameter tuning across 
five diverse domains but also by providing a clear and 
practical framework for documenting and reporting the 
tuning process, thereby addressing the limitations of 
previous research.

3. Methodology

This section outlines the experimental design for 
evaluating the impact of hyperparameter tuning on 
model performance across five distinct machine learning 
domains: sentiment analysis, image classification, time 
series forecasting, Natural Language Processing (NLP) 
for text classification, and credit risk assessment. These 
areas were selected because they offer complementary 
and established machine learning techniques that are 
well suited to the characteristics of the data in text 
classification and credit risk contexts. They leverage 
linguistic content through natural language processing 
(NLP) and sentiment analysis, capture temporal patterns 
using time-series forecasting, and incorporate feature 
learning advancements influenced by image classification 
(Aleqabie et al., 2024; Chen et al., 2024; Sadeghian 
Broujeny et al., 2023). For each domain, we specified 
the objectives, datasets, models, hyperparameters, 
tuning methods, and evaluation metrics.

3.1.	 Data reprocessing and standardisation

To   ensure a fair and reproducible comparison of 
the models, a standardised preprocessing pipeline 
was established for each experimental domain. This 
is crucial because the performance of a model can 
be as sensitive to data preprocessing as it is to the 
choice of hyperparameters. By applying a consistent 
set of preprocessing steps for each domain before 
hyperparameter tuning, we isolated the effect of the 
tuning process itself.

For the IMDb and 20 Newsgroups datasets in the 
text-based domains of sentiment analysis and NLP, a 
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standard text preprocessing pipeline was applied. This 
included converting all text to lowercase, removing 
punctuation and stop words, and tokenising the text. 
For the SVM and Multinomial Naive Bayes models, 
the text was then vectorised using the Term Frequency-
Inverse Document Frequency (TF-IDF). For the LSTM 
models, pre-trained GloVe word embeddings were used 
to convert text into numerical sequences.

In addition, for the image classification CIFAR-10 
dataset, the pixel values of the images were normalised 
from the range [0] [255] to [0] [1] by dividing by 255. 
This ensured that the input values for the CNN were on 
a consistent scale. No data augmentation was used in 
the default case to provide a baseline, but it is a common 
hyperparameter for tuning in practice. Similarly, the 
time-series forecasting daily female births dataset was 
scaled using a MinMaxScaler to transform the data 
into the range [0] [1]. This is a common practice for 
LSTM networks to improve their training stability and 
performance.

Similarly, in the credit risk assessment dataset, which 
contains a mix of numerical and categorical features, 
one-hot encoding was applied to the categorical features 
to convert them into a numerical format. The numerical 
features were then standardised using a StandardScaler, 
which removes the mean and scales the data to unit 
variance. This prevents features with larger scales from 
dominating the model-training process.   

This section demonstrates that all preprocessing 
was standardised before hyperparameter tuning, which 
further ensured a fair comparison across all models, 
enhanced reproducibility, and prevented preprocessing 
from confounding the results.

3.2.	 Sentiment Analysis

Sentiment analysis is a branch of artificial intelligence 
that automates the process of using natural language 
processing (NLP) and machine learning to analyse 
digital text and determine the emotional tone or 
subjective opinion expressed (Jim et al., 2024). The 
study area, also known as opinion mining or emotion AI, 
primarily classifies text as positive, negative, or neutral 
to help organisations understand public opinion, monitor 
brand reputation, and gain insights from customer and 
employee feedback at scale. 

3.2.1.	 Objective and dataset

The objective of this experiment was to classify movie 
reviews as positive or negative reviews. This binary 
classification task was used to evaluate the performance 
of the models with default and tuned hyperparameters. 

The study utilises the Large Movie Review Dataset 
(IMDb) Maas et al. (2011), which consists of 50,000 
movie reviews, split into 25,000 for training and 25,000 
for testing purposes. The dataset was balanced with 
equal numbers of positive and negative reviews.

3.2.2.	 Models and hyperparameters

The hyperparameters of the two evaluated models are 
listed in Table 1.  a Support Vector Machine (SVM) 
with TF-IDF features and a Long Short-Term Memory 
(LSTM) network. The hyperparameter settings for the 
two models are listed in Table 1.

Table 1: Hyperparameters and search spaces for SVM and 
LSTM models.

Model Hyperparameter Search Space

SVM C (Regularisation) {0.1, 1, 10, 100}

Kernel {"linear", "rbf"}

Gamma (RBF kernel) {0.001, 0.01, 0.1, 1}

LSTM Embedding Dimension {100, 200, 300}S

Hidden Units {128, 256}

Dropout Rate {0.2, 0.3, 0.4, 0.5}

Learning Rate {0.001, 0.01}

The table shows the hyperparameters and search 
space for a Support Vector Machine (SVM) with TF-
IDF features and an ((LSTM) network.

3.2.3.	 Tuning methods and evaluation Metrics

The optimisation techniques employed for both 
models were grid search, random search, and Bayesian 
optimisation. In addition, gradient-based optimisation 
was used for the LSTM models. The metrics used 
to evaluate the model performance were accuracy, 
precision, recall, and F1-Score.

3.3.	 Image classification

Image classification is a core computer vision task that 
involves categorising an entire image into one or more 
predefined classes or categories based on its visual 
content. The goal is to enable computers to automatically 
recognise patterns, textures, and shapes to label images 
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correctly, similar to humans would (Tsirtsakis et al., 
2025).

3.3.1.	 Objective and dataset

The objective of this experiment was to classify images 
from the CIFAR-10 dataset into one of these categories.  
The CIFAR-10 dataset Krawczyk, (2016) consists of 
60,000 32 × 32 colour images in 10 classes, with 6,000 
images per class. The dataset was divided into 50,000 
training and 10,000 testing images, respectively.

3.3.2.	 Model and hyperparameters

The hyperparameter settings for the Convolutional 
Neural Network (CNN) used for this task are shown 
in Table 2, and the values for each hyperparameter are 
indicated in the search space column.

Table 2: Hyperparameters and search space for the CNN 
model.

Model Hyperparameter Search Space

CNN Number of Filters {32, 64, 128}

Kernel Size {(3, 3), (5, 5)}

Activation Function {"relu", "tanh"}

Dropout Rate {0.25, 0.5}

Learning Rate {0.001, 0.0001}

Batch Size {32, 64, 128}

3.3.3.	 Tuning methods and evaluation metrics

Grid Search, Random Search, Bayesian Optimisation, 
and Gradient-Based Optimisation were used to tune 
the CNN”s hyperparameters. The model performance 
was evaluated using accuracy and a confusion matrix 
to visualise the classification performance of each class.

3.4.	 Time series forecasting

Time series forecasting refers to the branch of data 
science and artificial intelligence that predicts future 
values or occurrences based on available historical data. 
The procedure involves developing models that identify 
patterns, trends, and seasonal variations in past data to 
extrapolate likely future outcomes (Syed et al., 2025). 

3.4.1.	 Objective and dataset

The “Daily Female Births in California, 1959” dataset 
available in the Kaggle and UCI repositories was used 
for the experiment. The dataset contained the daily 
female birth count for 365 days, and the objective of the 

experiment was to forecast the number of daily female 
births in California in 1959.

3.4.2.	 Model and hyperparameters

An LSTM network was used for forecasting. The 
hyperparameter and search space are presented in Table 
3.

Table 3: Hyperparameter settings for LSTM model
Model Hyperparameter Search Space

LSTM Number of LSTM Units {50, 100, 150}

Number of Layers {1, 2, 3}

Dropout Rate {0.1, 0.2, 0.3}

Learning Rate {0.001, 0.01}

Batch Size {16, 32, 64}

Sequence Length {10, 20, 30}

3.4.3.Tuning methods and evaluation metrics

Grid Search, Random Search, Bayesian Optimisation, 
and Gradient-Based Optimisation were used for the 
tuning. The performance of the model was evaluated 
using the Mean Squared Error (MSE), Mean Absolute 
Error (MAE), and R-squared.

3.5.	 Natural Language Processing (NLP) - text 
classification

Text classification is a fundamental Natural Language 
Processing (NLP) task that involves assigning predefined 
categories or labels to text data to automatically organise 
and analyse them (Taha et al., 2024). 

3.5.1.	 Objective and dataset

The 20 Newsgroups dataset in Lang (1995), which 
comprises approximately 18,000 newsgroup posts on 20 
topics, was employed for this experiment. The objective 
was to classify documents from the 20 Newsgroups 
dataset into their respective newsgroups.

3.5.2.	 Models and hyperparameters

The hyperparameters of the Multinomial Naive Bayes 
(MNB), SVM, and LSTM networks used for the 
Natural Language Processing (NLP) text classification 
experiment are listed in Table 4.
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Table 4: Hyperparameters of  MNB,  SVM, and LSTM 
networks

Model Hyperparameter Search Space

MNB Alpha (smoothing) {0.01, 0.1, 1, 10}

SVM C (Regularisation) {0.1, 1, 10, 100}

Kernel {"linear", "rbf"}

LSTM Embedding Dimension {100, 200}

Hidden Units {128, 256}

Dropout Rate {0.2, 0.5}

3.5.3.	 Tuning methods and evaluation metrics 

Grid Search, Random Search, and Bayesian 
Optimisation was used for the three models. Gradient-
based Optimisation was applied to the LSTM. Accuracy, 
macro-averaged precision, recall, and F1-Score were 
used as metrics to evaluate the performance of the 
models. 

3.6.	 Credit Risk Assessment

Credit risk assessment is  the process of evaluating a 
borrower’s ability and willingness to repay a loan and 
determining the potential for financial loss if the 
borrower defaults on their obligations. This assessment 
is a critical component of credit risk management, 
helping institutions make informed lending decisions, 
set appropriate interest rates, and manage overall 
portfolio risk (Lorenz, 2023). 

3.6.1.	 Objective and dataset

The German Credit Data from the UCI Machine Learning 
Repository were selected for this experiment. This 
dataset contains 1000 entries, each with 20 categorical 
and numerical attributes. The objective was to predict 
credit default risk based on a set of customer attributes.

3.6.2.	 Models and hyperparameters

The hyperparameter settings for Logistic Regression, 
Random Forest, and XGBoost used for credit risk 
assessment are listed in Table 5.

3.6.3. Tuning methods and evaluation metrics

The performance of the model was evaluated using 
accuracy, precision, Recall, F1-Score, and area under the 
ROC curve (AUC-ROC). The optimisation techniques 
used were grid search, random search, and Bayesian 
Optimisation, which were used for all models.

Table 5: Hyperparameters setting for  Logistic Regression, 
Random Forest, and XGBoost

Model Hyperparameter Search Space
Logistic 
Regression

C (Regularisation) {0.01, 0.1, 1, 
10, 100}

Penalty {"l1", "l2"}

Random Forest Number of 
Estimators

{100, 200, 500}

Max Depth {10, 20, 30, 
None}

Min Samples Split {2, 5, 10}

XGBoost Learning Rate {0.01, 0.1, 0.2}

Max Depth {3, 5, 7}

N_estimators {100, 200, 500}

4. Results and Discussion

This section presents the results of our experiments, 
comparing the performance of the models with default 
hyperparameters to those tuned with various optimisation 
methods. The results are presented separately for each 
of the five domains.

4.1.	 Sentiment analysis

The results of the sentiment analysis task are shown 
in Figure 1. For both the SVM and LSTM models, 
all hyperparameter tuning methods significantly 
outperformed the default settings. Bayesian Optimisation 
and gradient-based Optimisation achieved the best 
performance for the LSTM model, with accuracies of 
0.9165 and 0.9185, respectively. For the SVM model, 
Bayesian Optimisation achieved the highest accuracy of 
0.8920.

These findings are consistent with those of other 
studies. For example, Rajalaxmi et al. (2022) reported 
that hyperparameter tuning of an LSTM model for 
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sentiment analysis resulted in a significant improvement 
in the F1-score, from a baseline of 88.5% to 99.63%. 
Similarly, Elgeldawi et al. (2021) demonstrated the 
significant impact of hyperparameter tuning on the 
performance of machine learning algorithms for Arabic 
sentiment analysis.

4.2.	 Image classification

Figure 2 shows the results of the image classification 
task. The tuned CNN models significantly outperformed 
the default model, with the gradient-based Optimisation 
method achieving the highest accuracy of 0.8625. This 
aligns with the findings of Wojciuk et al. (2024), who 
conducted a systematic study of the impact of CNN 
hyperparameters on image classification performance 
and found that proper tuning can lead to significant 
accuracy gains.

Our results also resonate with the work of Hussain 
et al. (2025), who demonstrated the effectiveness of 

using genetic algorithms for CNN hyperparameter 
optimisation. Although Grid Search also achieves high 
accuracy, it comes at the cost of a significantly longer 
training time, a trade-off also highlighted by Ilemobayo 
et al. (2024).

4.3.	 Time series forecasting

The results of the time-series forecasting task are shown 
in Figure 3. All tuning methods led to a significant 
reduction in both MSE and MAE and a corresponding 
increase in the R-squared value. The gradient-
based Optimisation method again achieves the best 
performance, with the lowest MSE and MAE and the 
highest R-squared value.

These results are consistent with the findings of Dhake 
et al. (2023), who compared various hyperparameter 
tuning algorithms for LSTMs in time series forecasting 
and found that advanced optimisation methods yielded 
substantial improvements. Furthermore, our results 

	            
Figure 1: Comparison of SVM and LSTM performance on the sentiment analysis task with different hyperparameter-tuning 

methods.

        
Figure 2: Comparison of CNN performance on CIFAR-10 image classification task.
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support the work of Bakhashwain and Sagheer (2021), 
who developed an online tuning approach for deep 
LSTMs and demonstrated the importance of adaptive 
hyperparameter tuning for time-series data.

4.4.	 Natural Language Processing (NLP) - text 
classification

Figure 4 shows the results for the 20 Newsgroups text 
classification task. The left chart in the figure compares 
the accuracy (blue bars) and Macro F1 (orange bars) 
for different Multinomial Naive Bayes hyperparameter-
tuning methods. The Accuracy and Macro F1 values 
for the default setting were ~0.78 and ~0.76, and those 
for the Grid Search were ~0.81 and ~0.80, and ~0.81, 
~0.79, and ~ 0.82, ~ 0.81, respectively, for Bayesian 
Optimisation. The default settings yielded the lowest 
performance (accuracy ≈ 0.78; Macro F1 ≈ 0.76).  All 
tuning methods improved performance, with Bayesian 
Optimisation achieving the best results (accuracy ≈ 
0.82, Macro F1 ≈ 0.81). Grid Search and Random 
Search perform similarly, but Bayesian Optimisation 
slightly outperforms both. The right chart shows the 
Accuracy and Macro F1 scores for the SVM. The two 
values for the default setting were (~0.823 and ~0.803), 
Grid Search (~0.868 and ~0.863), and Random Search 
(~0.861 and 0.858).  Similarly, the settings for the 
Bayesian Optimisation were (~0.875 and ~0.868). The 
Default SVM settings started at an accuracy of ≈ 0.823 
and a Macro F1 of ≈ 0.803. Grid Search and Random 
Search significantly improve performance, but Bayesian 
Optimisation achieves the highest scores of Accuracy ≈ 
0.875 and Macro F1 ≈ 0.868.  For both the Multinomial 
Naive Bayes and SVM models, hyperparameter tuning 
led to a noticeable improvement in performance, and 
the improvement from default to tuned was substantial, 

highlighting the importance of hyperparameter tuning 
for SVM.

This result is consistent with the findings of Schratz 
et al. (2019), who demonstrated that tuning various 
machine learning models for text classification can lead 
to significant performance gains. These improvements 
also align with the conclusions of Aguilera-Venegas et 
al. (2023), who showed that proper tuning dramatically 
affects model accuracy in NLP tasks.

4.5.	 Credit risk assessment

The results of the credit risk assessment task are shown 
in Figure 5. For all three models (Logistic Regression, 
Random Forest, and XGBoost), hyperparameter tuning 
led to improved performance across all metrics. Bayesian 
Optimisation consistently provided the best results for 
all models, with XGBoost achieving the highest overall 
performance.

The top-left chart in Figure 5 compares the accuracies 
of Logistic Regression, Random Forest, and XGBoost 
across the four hyperparameter tuning strategies. The 
observed values for the default, grid search, random 
search, and Bayesian Optimisation consecutively on 
Logistic Regression are (~0.746, ~0.775, ~0.770, and 
~0.779, respectively), Random Forest (~0.702, ~0.739, 
~0.735, and ~0.756, respectively), and for XGBoost, 
the values are (~0.725, ~0.770, ~0.765, and ~0.807, 
respectively). All models improved with tuning, but 
XGBoost showed the largest gain, reaching an accuracy 
of ~ 0.807 with Bayesian Optimisation. Logistic 
Regression benefits moderately, whereas Random 
Forest shows a steady improvement.	  

The F1-Score Comparison in the top-right chart 
shows the Macro F1-score, which balances precision and 
recall. For Logistic Regression, the value for the default 

	      
Figure 4: Comparison of Multinomial Naive Bayes and SVM performance on the 20 Newsgroups text classification task.
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setting was ~0.747, and that of Bayesian Optimisation 
was ~0.780. For Random Forest, the Default was 
~0.703, and the value for Bayesian Optimisation was 
~0.750. Similarly, the default value of XGBoost was 
~0.726, and that of Bayesian Optimisation was ~0.805. 
Overall, the F1-score trends mirror the accuracy 
improvements, confirming that tuning enhances the 
balanced performance. Again, XGBoost leads, showing 
strong gains in both accuracy and F1.	

Furthermore, the AUC-ROC comparison at the 
bottom left of Figure 5 is a measure of classification 
quality across thresholds. Logistic Regression: (default: 
~0.78, Bayesian Optimisation: ~0.80), Random Forest: 

(default: ~0.82, Bayesian Optimisation: ~0.85), 
XGBoost: (default: ~0.84 → Bayesian Optimisation: 
~0.87). As indicated, the AUC-ROC improved for all 
models, with XGBoost achieving the highest score 
(approximately 0.87). Random Forest also benefits 
significantly, indicating better discrimination between 
classes after tuning.

The bar chart in the bottom-right chart compares 
the default accuracy with Bayesian Optimisation, which 
has the best-tuned accuracy for each model. The default 
→ Bayesian optimisation increment values for Logistic 
Regression are 0.746 → 0.779; for Random Forest, 0.702 
→ 0.756; and for XGBoost, 0.725 → 0.807. The results 

	
Figure 5: Comparison of model performance in credit risk assessment task.
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show that Bayesian Optimisation consistently delivers 
the best performance across all models. Similarly, 
XGBoost showed the largest improvement (~8.2% 
gain), highlighting its sensitivity to the hyperparameter 
tuning.	 These findings are supported by recent literature, 
such as the work of Inga and Sacoto-Cabrera (2023), who 
demonstrated the value of hyperparameter optimisation 
in credit default risk analysis. Similarly, Machado et al. 
(2025) applied machine learning with hyperparameter 
optimisation to credit risk assessment and found that it 
significantly improved predictive accuracy.

4.6.	 Overall improvement

Figure 6 summarises the performance improvement 
achieved through hyperparameter tuning in all 
five domains. The results clearly demonstrate that 
hyperparameter tuning leads to significant performance 
gains in all cases, with improvements ranging from 
5.8% to 27.6%.

These improvement ranges are consistent with 
those reported by Probst, Wright, et al. (2019), where 
hyperparameter tuning yielded performance gains 
of 5-20% in sentiment analysis, 10-25% in image 
classification, and 8-18% in NLP classification tasks.

4.7.	 Comparison of tuning methods

Figure 7 shows a comparison of the different 
hyperparameter-tuning methods in terms of their average 
performance improvement and relative computation 
times. Gradient-based and Bayesian optimizations 
provided the largest performance improvements, 
whereas Random Search was the most computationally 
efficient tuning method. The left chart illustrates 

the average percentage improvement in the model 
performance achieved by different hyperparameter 
tuning strategies compared with the default settings. The 
Grid Search is 10.5%, Random Search is 9.8%, Bayesian 
Optimisation is 11.2%, Gradient-Based Optimisation: 
12.1%. This result shows that all the tuning methods 
significantly enhanced the performance relative to the 
default configurations. Gradient-based Optimisation 
delivered the highest improvement (12.1%), followed 
closely by Bayesian Optimisation (11.2%). Grid 
Search and Random Search provide moderate gains 
but are less efficient compared to adaptive methods like 
Bayesian and Gradient-Based approaches. These results 
underscore the importance of advanced optimisation 
techniques for achieving superior model accuracy and 
generalisation. The right chart compares the relative 
computation time required by each tuning method, 
normalised to the default baseline (represented by 
the red dashed line at 1.0). the Grid Search is 3.5×, 
Random Search is 2.2×, and Bayesian Optimisation 
and Gradient-Based Optimisation are 2.8× and 2.5× 
respectively. Based on these values, the Grid Search 
incurs the highest computational cost (3.5×), reflecting 
its exhaustive search nature. Random Search is the 
most time-efficient method (2.2×), but its performance 
improvement is the lowest. Bayesian and gradient-
based optimisation strike a better balance between 
performance gains and computational overhead, making 
them attractive for large-scale or resource-constrained 
applications. The trade-off between performance 
improvement and computation time is evident; whereas 
advanced methods improve accuracy, they also require 
additional resources.

	     
Figure 7: Comparison of hyperparameter tuning methods in terms of performance improvement and computation time.
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The Experimental Results section provides 
compelling evidence of the critical role of 
hyperparameter tuning in machine learning applications. 
In all five domains considered, the models with tuned 
hyperparameters significantly outperformed those with 
default settings. This highlights the danger of relying on 
default hyperparameters, which are often suboptimal for 
specific datasets and tasks.			 

The results also demonstrate that hyperparameter 
tuning is critical for maximising model performance, 
with advanced methods outperforming traditional search 
strategies. Gradient-based Optimisation offers the best 
performance improvement at a moderate computational 
cost, suggesting its suitability for complex models. 
Researchers should consider both accuracy gains 
and computational efficiency when selecting tuning 
strategies, particularly in real-world scenarios where 
resource constraints are common. Practitioners should 
consider using more advanced methods to achieve 
optimal model performance.

The findings of this study have important 
implications for the reproducibility and comparability 
of machine learning research. The significant impact 
of hyperparameter tuning on model performance 
underscores the need for transparent and detailed 
reporting of hyperparameter settings. Without this 
information, it would be impossible to reproduce the 
results of a study or conduct a fair comparison between 
different models. The phenomenon of “hyperparameter 
deception” (Cooper et al., 2021) is a real and significant 
threat to the integrity of machine learning research, 
and it can only be addressed through a commitment 
to greater transparency and rigour.			 
This result aligns with the findings of Weerts et al. 
(2020), who emphasised the importance of considering 
tuning risk and the trade-off between performance 

and computational cost. Furthermore, the high 
computational cost of methods such as Grid Search, as 
observed in our experiments, was a key motivation for 
the development of meta-learning recommender systems 
for hyperparameter tuning, as proposed by Mantovani et 
al. (2019).

4.8.	 Machine learning reproducibility architecture

As part of our contribution to entrenching culture of 
adequate documentation and reporting of hyperparameter 
setting in machine learning model development. A 
machine learning reproducibility architecture was 
proposed, as shown in Figure 8.

Machine learning (ML) model development 
architecture refers to the structure and process of building 
and deploying an ML system, typically involving a 
pipeline of components, such as data preprocessing, 
feature extraction, model selection, training, evaluation, 
and deployment. An effective architecture is crucial for 
creating scalable, maintainable, and efficient ML systems 
and operations. Figure 8 depicts a six-component 
development pipeline starting with the raw dataset that 
is pre-processed by cleansing and aggregation when 
datasets are obtained from different sources. Feature 
engineering is the next phase, in which dimensionality 
reduction, numerousity reduction, and other feature 
selection techniques are applied. The output of these 
initial phases is a harmonised processed dataset for 
model development. In line with common practices 
in the domain, the dataset was split into training, 
validation, and testing datasets. Training and validation 
datasets were used during the model selection phase. 
Before model training, the hyperparameter settings 
must be optimally set. The architecture emphasises 
the documentation of the hyperparameter tuning 

   
Figure 8: Machine Learning Reproducibility Architecture
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process and the ultimate value set. This is for adequate 
reporting to various categories of stakeholders to ensure 
transparency. Finally, the model was tested and deployed 
if it performed satisfactorily.  The model was then tested 
for accuracy and adequacy. If found to be satisfactory, 
the model is deployed; otherwise, the process of model 
selection and hyperparameter setting is repeated.

5. Conclusion and Recommendations

This study highlights the critical role of hyperparameter 
tuning in machine learning and demonstrates its 
significant impact on the model performance across 
a wide range of domains. Our experimental results 
provide a clear and compelling case for the importance 
of systematic hyperparameter optimisation and the 
use of advanced tuning methods such as Bayesian and 
gradient-based optimisation.	

We also argue for the importance of transparent 
and detailed reporting of hyperparameter settings in 
the literature. The lack of such reporting is a major 
impediment to the reproducibility and comparability of 
machine learning research; therefore, we recommend a 
reproducibility roadmap. Hyperparameter tuning is not 
merely a technical detail; it is the cornerstone of effective 
and credible machine learning research. By prioritising 
transparency and thorough documentation, the research 
community can enhance reproducibility, foster fair 
comparisons, and accelerate scientific advancement. It 
is imperative that machine learning publications treat 
hyperparameter tuning with the attention it deserves.

To address these issues, machine learning research 
and user communities are encouraged to ensure explicit 
documentation of hyperparameter values and tuning 
strategies in the main text or appendices. The use of 
standardised reporting formats, templates, or checklists 
for model configuration should be advanced. In addition, 
the use of open-source codes and configurations should 
be entrenched to facilitate code sharing in repositories, 
thereby making replication easier. Future studies could 
explore the impact of hyperparameter tuning on other 
machine learning tasks such as reinforcement learning 
and generative modelling. It would also be valuable 
to investigate the interaction between hyperparameter 
tuning and other aspects of the machine learning pipeline, 
such as feature engineering and model selection.
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